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Introduction

This document constitutes my Masters thesis for the second-year of master Cryptis, at the
University of Limoges. It has been produced during and after my five months long internship at
the xlim laboratory in Limoges under the supervision of Cyrille Chenavier. This has been a
wonderful opportunity for me to explore the world of pure mathematics. The initial objective of
the internship was to get acquainted with the basic tools of homological algebra through the lens of
the Anick resolution, the Koszul complex and the use of non-commutative Gröbner bases in that
context.

My first step of the journey was to get comfortable manipulating notions related to modules
over not necessarily commutative rings and the basic concepts of the theory of associative algebras
(augmentations, presentations, free algebras, non-commutative Gröbner bases, etc). A particular
important part of the process was to get familiar with the use of the tensor product of modules over
non-commutative rings, which is central in the subjects of homological algebra I had to address.
Then, in order to grasp the most of the generality of homological algebra, one has to study the
language coming from category theory; this took me a fair amount of time to understand deeply the
inner-workings and motivations. I investigated quite a long time the concept of natural equivalences
by trying to understand where the framework of ordinary set theory fails to capture the “essence of
naturality”. I also dedicated some time to study the notions of universal properties and universal
constructions in category theory, which led me to learn more about the Yoneda lemma, the Yoneda
embedding and the theory of adjoint functors. However, by lack of time, I was not able to produce a
written account on what I have learnt on those topics. After obtaining the basics of category theory,
I moved on to learn about the rudiments of homological algebra. As the field was quite abstract for
me, I dedicated time to read about the history and the motivations of the discipline. This helped
me understand better the subsequent notions I had to absorb. Then, I went on to study in depth
the Anick resolution for augmented associative algebras. The angle I approached it with was these
of the Gröbner bases. However, the original material on the subject written by David J. Anick
was not given in that kind of language. This led me to write a preprint [ML23] in which I explain
the connections between the original setting of the initial article and the subsequent resources
treating it through the lens of Gröbner bases. Finally, I studied the (generalised) Koszul complex of
non-necessarily quadratic homogeneous algebras. I explored it first through its combinatorics point
of view but then went on to learn about (generalised) Koszul duality which helped me understand
the essential ideas behind the topic. The contribution of this thesis is a proof of the equality
between the Anick resolution and the Koszul complex for the homogeneous monomial algebras
satisfying the so-called overlap property.

The outline of this thesis follows a simple requirement to introduce the necessary notions of
non-commutative algebra, category theory and homological algebra to understand the proof of the
final chapter, being the main new result brought forward by this thesis.

The text is organised in four chapters:
The first chapter can serve as an introduction to the basics of module theory (see in particular

the tensor product with Definition 1.1.6.3) and of non-commutative algebra with a special interest
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6 INTRODUCTION

for non-commutative Gröbner bases (Definition 1.2.4.4).
The second chapter introduces the basic definitions of the language of the category theory:

categories (Definition 2.1.1.1), functors (Definition 2.1.2.1) and natural transformations (Defini-
tion 2.1.3.1). It also brings enough material to define the concept of abelian categories (Defini-
tion 2.2.2.8): those are the categories on which ordinary homological algebra can be applied.

The third chapter addresses the rudiments of homological algebra. In particular, we talk about
the Tor and Ext functors (Definitions 3.2.1.4, 3.2.2.1 and 3.2.2.2).

Finally, the fourth chapter is divided in three sections:

• First, we give an overview of the Anick resolution (Theorem 4.1.3.2), prove the equivalence
between the different definitions of the so-called n-chains (one of the basic but central ingredient
in the construction of the resolution) and give a proof for the minimality (see Subsection 4.1.5)
of the Anick resolution for monomial algebras. We refer to the preprint [ML23] for more
details on the matter.

• Second, we introduce the notions of (generalised) Koszul duality and Koszul complex to
non-necessarily quadratic homogeneous algebras (Definition 4.2.2.4).

• Finally, we take interest in the special case of homogeneous monomial algebras (Defini-
tion 1.2.3.5). We show that the Koszul complex is a subcomplex of the Anick resolution in
that context (Theorem 4.3.3.2). Then, after defining the overlap property (Definition 4.3.1.1),
we prove that the homogeneous monomial algebras satisfying that property have their Anick
resolution and their Koszul complex not only isomorphic, but actually equal (and so are their
contracting homotopies) (Theorem 4.3.4.4).

The prerequisites to understand this thesis are the basic notions of group theory, linear algebra
and ring theory. In particular, we will take for granted the definitions of abelian groups and vector
spaces over a field. It is hoped to be accessible to a graduate student in mathematics.

In terms of conventions, we will assume that every ring is unital but not necessarily commutative,
every module is unitary, every algebra is associative unitary. Unless specified otherwise, the ideals
are taken as two-sided.

Acknowledgements

I would like to thank Cyrille Chenavier for his constant support, kindness, open-mindedness
and helpful guidance all along the way as well as being available every time I needed help. I would
also like to thank Thomas Cluzeau with whom we had a few meetings and who helped with the
proofreading of the preprint.



Chapter 1

Preliminaries in (non-commutative)
algebra

In this chapter, we introduce the notions of module theory and non-commutative algebra required
to address the topics of homological algebra we want.

1.1 Module theory

1.1.1 Modules over a ring

We start by giving the basic definitions we will require throughout this thesis.
The main mathematical object manipulated in homological algebra is that of modules over a ring.

It can be viewed as a generalisation of vector spaces and abelian groups.

Definition 1.1.1.1 : Left module over a ring

Let (R, +R,×R, 1R) be a ring with identity.
A left R-module is any additive abelian group (M, +) endowed with an external law of
composition R×M →M , usually denoted by adjunction, that verifies the following axioms:

• “Associativity”: ∀r, s ∈ R,∀a ∈M, (r ×R s)a = r(sa),

• “Left-distributivity”: ∀r, s ∈ R,∀a ∈M, (r +R s)a = ra + sa,

• “Right-distributivity”: ∀r ∈ R,∀a, b ∈M, r(a + b) = ra + rb,

• “Identity”: ∀a ∈M, 1Ra = a.

Remark 1.1.1.2 : Axioms versus ring-homomorphism

Alternatively, one can define the structure of module on an additive abelian group (M, +),
by providing a unital-ring-homomorphism µ : R→ End(M) where End(M) is the ring of
endomorphisms on M (product being the composition of endomorphisms). The multiplication
by scalars in R used in the Definition 1.1.1.1 is then defined as ra := µ(r)(a). It follows
from the properties of the unital-ring-homomorphism that the axioms are satisfied.
Conversely, if one is given the structure of a module such as in the definition, one can define
the unital-ring-homomorphism: µ : r 7→ (a 7→ ra) that would yield the same multiplication
by scalars if one was to define it in the same way as above.

7



8 CHAPTER 1. PRELIMINARIES IN (NON-COMMUTATIVE) ALGEBRA

There is no obstacle to define the same kind of structure but considering an external law of
composition from the right:

Definition 1.1.1.3 : Right module over a ring

Let (R, +R,×R, 1R) be a ring with identity.
A right R-module is any additive abelian group (M, +) endowed with an external law of
composition M ×R→M , usually denoted by adjunction, that verifies the following axioms:

• “Associativity”: ∀r, s ∈ R,∀a ∈M, a(r ×R s) = (ar)s,

• “Left-distributivity”: ∀r, s ∈ R,∀a ∈M, a(r +R s) = ar + as,

• “Right-distributivity”: ∀r ∈ R,∀a, b ∈M, (a + b)r = ar + br,

• “Identity”: ∀a ∈M, a1R = a.

The argument made in Remark 1.1.1.2 can also be applied for the case of right modules mutatis
mutandis the order of operands.

Remark 1.1.1.4 : Case of a commutative ring

If the base ring R is commutative, then any left R-module can canonically be equipped
with a structure of right R-module, and vice versa. Indeed, consider M a left R-module
where R is commutative. Define the external law of composition on the right M ×R→M

as (a, r) 7→ ra. Then the axioms for right R-modules are verified since we would have for
“associativity”:

a(r ×R s) = (r ×R s)a = (s×R r)a = s(ra) = (ar)s.

Another way to look at it is by noticing that any right R-module is a left Ropp-module,
where Ropp is the opposite ring in which we have r ×Ropp s := s ×R r. Then, since the
commutative rings are equal to their opposite rings, any left module is a right module.
It is for this reason that we often simply speak of R-modules when R is commutative since
there are no distinction between left and right.
This second way of looking at the relation between left and right modules in terms of
opposite ring allows us as well to restrict the definitions to only left modules without losing
generality. We will do so in the sequel.

Example 1.1.1.5 : (Abelian groups)

The abelian groups are exactly the Z-modules, where Z is the ring of integers. The
multiplication by scalars is defined as repetitive addition or subtraction. Explicitly, if A is
an additive abelian group, define the module structure by:

∀n ∈ Z,∀a ∈ A, na :=



n times︷ ︸︸ ︷
a + a + · · ·+ a if n > 0,

0 if n = 0,

(−a) + (−a) + · · ·+ (−a)︸ ︷︷ ︸
−n times

if n < 0.
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Example 1.1.1.6 : (Vector spaces)

A vector space over a field K is just a left K-module. And conversely, every left K-module
where K is a field is a vector space. Since a field is a commutative ring, there are in theory
no requirement to mention left. However, the convention for vector spaces is usually to place
the scalars on the left of the vectors.

Example 1.1.1.7 : (Rings as modules)

Rings can be viewed as left or right modules over themselves: let R be a unital ring, it is in
particular an additive abelian group. Endow this group with the action on the left defined
by the ring product on the left and one obtains a left R-module. Similarly, we can view R

as a right R-module.

Let us introduce a more involved example that will be used a few more times in this thesis to
illustrate different notions.

Example 1.1.1.8 : (Module over a group algebra)

Let G be a finite group and K be a field. Define the group algebra K[G] to be the set of
formal finite linear combination of elements of G with coefficients in K. This is a K-vector
space that can be equipped with a structure of associative unitary algebra by defining the
product through distributivity. So in particular, K[G] is a unital ring and can be used as
the ground ring for modules.
In representation theory [Ser77], K[G]-modules arise naturally when we consider represen-
tation of finite groups in the group of invertible matrices with coefficients in K. In more
details, let G be a finite group, n a positive integer and K be field. Then, a representation
of the group G is a homomorphism of groups ρ : G→ GLn(K) (we represent the abstract
elements of G as invertible matrices with coefficients in our chosen field K). Giving ourselves
a representation of G is equivalent to giving ourselves a left K[G]-module. Indeed, consider
a vector space V of dimension n. Then: GLn(K) ∼= Aut(V ) once a basis of V is fixed. If ρ

is a representation of G, then define the following unital-ring-homomorphism:

µρ : K[G] → End(V )∑
g λgg 7→

∑
g λgρ(g).

According to Remark 1.1.1.2, this equips V with a structure of K[G]-module.
Conversely, if one is given a unital-ring-homomorphism µ : K[G]→ End(V ), then define
the group homomorphism ρµ : G→ End(V ) as the restriction of µ to G. In fact, since the
elements of G viewed as elements of K[G] are units of the ring, this group homomorphism ρµ

takes values in Aut(V ) ∼= GLn(K). It is therefore a representation of G.

As with most algebraic structures we are now interested in subojects and quotient objects.

Definition 1.1.1.9 : Submodule

Let R be a ring. Let M be a left R-module.
A submodule of M is any subgroup N of the additive abelian group M that is closed under
scalar multiplication:

∀r ∈ R, ∀a ∈ N, ra ∈ N.

It follows directly that any submodule of an R-module is also an R-module.
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Definition 1.1.1.10 : Submodule generated by subset

Let R be a ring. Let M be a left R-module. Let S ⊆M be a subset.
The submodule generated by S is the following set:

SpanR(S) :=
{

n∑
i=1

risi

∣∣∣∣∣ n ∈ N ∧ ∀i ∈ J1 .. nK, ri ∈ R ∧ si ∈ S

}
.

By convention, the empty sum is equal to 0.
For any subset S of M , the set SpanR(S) is a submodule of M .

Example 1.1.1.11 : (Subgroups)

The submodules of abelian groups seen as Z-modules are exactly the same thing as subgroups
of those abelian groups.

Example 1.1.1.12 : (Vector subspaces)

Similarly, the submodules of K-vector spaces viewed as K-modules are exactly the subspaces
of those vector spaces.

Example 1.1.1.13 : (Ideals as submodules)

If R is a ring and I is a left-ideal of R, then I can be seen as a submodule of R when we
view R as a left module over itself. Indeed, recall that a left-ideal is precisely an additive
subgroup of R that is closed under multiplication to the left by elements of R, which is
exactly the requirement for being a submodule. In the same manner, any right-ideal is a
submodule of R when considering it a right module over itself.

Example 1.1.1.14 : (Trivial submodule)

For any R-module M whose zero element is denoted 0, the set {0} is always a submodule,
called the trivial submodule. We will denote by 0 any trivial module.

Definition 1.1.1.15 : Quotient module

Let R be a ring. Let M be a left R-module. Let N be a submodule of M .
The quotient module of M modulo N , denoted M/N, is defined as the quotient group M/N,
when considering M and N as additive groups, endowed with the structure of R-module as
follows:

∀r ∈ R, ∀a ∈M, r(a + N) := (ra) + N,

where b + N is the coset of b ∈M modulo N .

Once again, we see that this definition generalises perfectly the corresponding notions in group
theory and linear algebra.

Example 1.1.1.16 : (Quotient of abelian groups)

The quotient module of an abelian group modulo a subgroup, viewed as Z-modules, is
exactly the quotient group of the two.
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Example 1.1.1.17 : (Quotient of vector spaces)

The quotient module of a K-vector space modulo a subspace, when seen as K-modules, is
precisely the quotient space of the two.

Definition 1.1.1.18 : Bimodule

Let R and S be rings.
A (R, S)-bimodule is any set M that can be viewed simultaneously as a left R-module and
a right S-module, whose underlying additive groups are the same, and that satisfy the
following additional “associativity” property:

∀r ∈ R, ∀a ∈M, ∀s ∈ S, (ra)s = r(as).

Remark 1.1.1.19 : Bimodule as a left-module

Giving a (R, S)-bimodule is equivalent to giving a left (R ⊗Z S)-module where ⊗Z is the
tensor product defined in Definition 1.1.6.3.

Example 1.1.1.20 : (Subring of center)

If R is a ring, denote by Z(R) its center, i.e. the set of elements in R that commute
multiplicatively with every other elements in R. This is a subring of R. Indeed, 1 ∈ Z(R)
by the axioms of unital rings. Then, one can see that Z(R) is an additive subgroup:

∀a, b ∈ Z(R), ∀r ∈ R, (a− b)r = ar − br = ra− rb = r(a− b).

And finally that Z(R) is closed under multiplication:

∀a, b ∈ Z(R), ∀r ∈ R, r(ab) = (ra)b = (ar)b = a(rb) = a(br) = (ab)r.

It follows that we can use the center of any ring as a base ring for modules.
In particular, if M is a left R-module, then it can be viewed as an (R, Z(R))-bimodule
defining the right Z(R)-module as as := sa for all a ∈M and s ∈ Z(R) viewed as an element
of R. The “associativity” condition is then satisfied since:

(ra)s := s(ra) = (sr)a = (rs)a = r(sa) =: r(as).

More generally, if S is any subring of Z(R), then any left R-module can be seen as a (R, S)-
bimodule.

1.1.2 Homomorphisms of modules

Now that we have defined the basic algebraic objects we are working with, it comes up naturally
to interest ourselves in the relations they hold towards each other and how to transform one into
another.
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Definition 1.1.2.1 : Linear maps between modules

Let R be a ring. Let M and N be left R-modules.
An homomorphism of R-modules, or R-linear map, from M to N is any additive group
homomorphism f : M → N that satisfies the following property:

∀r ∈ R, ∀a ∈M, f(ra) = rf(a).

Proposition 1.1.2.2 : Composition preserves linearity

Let R be a ring. Let M1
f→M2

g→M3 be two R-linear maps between left R-modules.
The composite map g ◦ f is also R-linear.

Proof. Let a, b ∈M1 and r ∈ R:

(g ◦ f)(a + rb) = g(f(a + rb)) = g(f(a) + rf(b)) = g(f(a) + rgf(b) = (g ◦ f)(a) + r(g ◦ f)(b).

Just as for group theory, we have the notion of kernel and cokernel as well as the image.

Definition 1.1.2.3 : Image, kernel, cokernel

Let R be a ring. Let M and N be left R-modules. Let f : M → N be an R-linear map.
The kernel of f is the set:

ker(f) := {a ∈M | f(a) = 0} .

It is a submodule of M .
The image of f is the set:

im(f) := {f(a) ∈ N | a ∈M} .

It is a submodule of N .
The cokernel of f is the quotient module:

coker(f) := N/im(f).

The well-known properties of injectivity and surjectivity in group theory translate as well here
with modules:

Proposition 1.1.2.4

Let R be a ring. Let M and N be left R-modules. Let f : M → N be an R-linear map.
Then:

f is injective ⇔ ker(f) = 0.

f is surjective ⇔ im(f) = N ⇔ coker(f) = 0.

Proof. By definition, f is injective if and only if for all a, b ∈ M , f(a) = f(b) implies a = b.
But f(a) = f(b) is equivalent to f(a−b) = 0 which is equivalent to a−b ∈ ker(f). Thus, if ker(f) = 0,
then injectivity follows. Conversely, if f is injective and a ∈ ker(f), then f(a) = 0 = f(0), hence we
have a = 0.
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Surjectivity being equivalent to the equality image = codomain follows directly from the definition
of surjective maps and the tautology im(f) ⊆ codom(f). The other equivalence follows directly
from the definition of the cokernel.

Example 1.1.2.5 : (Zero map)

Given any two left R-modules M and N over a ring R, the map 0 : M → N that sends every
element of M to the zero element of N is called the zero map. Whenever M or N is the
trivial module, then there exists no map from M to N other than the zero map.

Example 1.1.2.6 : (Identity)

If M is a left R-module over a ring R, then the identify function idM : M →M given
by idM (a) = a, for all a ∈M , is R-linear. It is both surjective and injective.

Example 1.1.2.7 : (Canonical injection)

Let R be a ring, M be a left R-module and N a submodule of M . Then, the map iN : N →M

defined as the restriction of the identity map idM to N is R-linear. Moreover, since idM

is injective, all of its restriction are too, in such a way that iN is injective. It is called the
canonical injection of N in M .

Example 1.1.2.8 : (Canonical projection)

Let R be a ring, M be a left R-module and N a submodule of M . The map πN : M → M/N

that associates to each a ∈M its coset a+N is R-linear. Furthermore, this map is surjective
and is called the canonical projection of M modulo N .

Definition 1.1.2.9 : Isomorphism

Let R be a ring. Let M and N be left R-modules.
An isomorphism of R-modules between M and N is any R-linear map f : M → N that is
bijective, i.e. both injective and surjective.
If there exists an isomorphism between M and N , we write M ∼= N .

Proposition 1.1.2.10

Let R be a ring. Let M and N be left R-modules. Let f : M → N be an R-linear map.
Then, f is an isomorphism of R-modules if, and only if, there exists a two-sided inverse of f

that is R-linear.

Proof. If f is an isomorphism then it is bijective and thus admits an inverse map f−1 : N →M

defined for all a ∈ N by f−1(a) = af where af is the unique antecedent of a by f . Notice that,
since f(ra) = rf(a), then (ra)f = raf . Therefore, we have:

f−1(a + rb) = f−1(f(af ) + f((rb)f )) = f−1(f(af + rbf )) = af + rbf = f−1(a) + rf−1(b).

Hence, f−1 is R-linear.
Conversely, assuming f has a two-sided inverse of f that is R-linear, then f is bijective by the

properties of two-sided inverse of any map. Hence, it is an isomorphism of R-modules.
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Theorem 1.1.2.11 : (First isomorphism theorem)

Let R be a ring. Let M and N be left R-modules. Let f : M → N be an R-linear map.
Then:

M/ker(f) ∼= im(f)

Proof. Consider the mapping φ : M/ker(f) → im(f), a + ker(f) 7→ f(a). It is well-defined since
if a + ker(f) = b + ker(f), then a − b ∈ ker(f) and thus f(a) = f(b). The R-linearity of φ

follows directly from the R-linearity of f . Let b = f(a) ∈ im(f). Then φ(a + ker(f)) = b,
making φ surjective. Let a + ker(f) ∈ ker(φ), then 0 = φ(a + ker(f)) = f(a) so a ∈ ker(f)
hence a + ker(f) = 0 + ker(f) which is the zero element in M/ker(f). Therefore, φ is indeed injective
and thus an isomorphism of R-modules.

Proposition 1.1.2.12 : Addition of linear maps

Let R be a ring. Let M and N be left R-modules. Let f, g : M → N be R-linear maps.
Then the following map is R-linear:

f + g : M → N

a 7→ (f + g)(a) := f(a) + g(a).

Proof. Let a, b ∈M and r ∈ R:

(f + g)(a + rb) = f(a + rb) + g(a + rb) by definition of f + g

= f(a) + rf(b) + g(a) + rg(b) by R-linearity of f and g

= (f(a) + g(a)) + r(f(b) + g(b)) since N is a R-module

(f + g)(a + rb) = (f + g)(a) + r(f + g)(b) by definition of f + g

Proposition 1.1.2.13 : Multiplication by scalar of linear map

Let R and S be rings. Let M and N be left R-modules. Let f : M → N be a R-linear map.
If M is (R, S)-bimodule, then for all s ∈ S the following map is R-linear:

sf : M → N

a 7→ (sf)(a) := f(as).

If N is (R, S)-bimodule, then for all s ∈ S the following map is R-linear:

fs : M → N

a 7→ (fs)(a) := f(a)s.

Proof. Suppose M is a (R, S)-bimodule. Let a, b ∈M , r ∈ R and s ∈ S:

(sf)(a + rb) = f((a + rb)s) by definition of sf

= f(as + rbs) since M is a (R, S)-bimodule

= f(as) + rf(bs) by R-linearity of f

= (sf)(a) + r(sf)(b) by definition of sf



1.1. MODULE THEORY 15

Suppose now N is (R, S)-bimodule. Let a, b ∈M , r ∈ R and s ∈ S:

(fs)(a + rb) = f(a + rb)s by definition of fs

= (f(a) + rf(b))s by R-linearity of f

= f(a)s + r(f(b)s) since N is a (R, S)-bimodule

= (fs)(a) + r(fs)(b) by definition of fs

Proposition 1.1.2.14 : Structure on linear maps

Let R be a ring. Let M and N be left R-modules.
The set HomR (M, N) consisting of all R-linear maps from M to N can be endowed with a
structure of left or right Z(R)-module.
In particular, it is an abelian group.
In the case of R being commutative, then HomR (M, N) is a R-module.

Proof. The additive operation is given by Proposition 1.1.2.12. It follows directly from the definition
and the fact that the codomain is a module that HomR (M, N) is an abelian group for that operation
whose zero element is the zero map (Example 1.1.2.5).

The scalar multiplication to the left (resp. to the right) is given by the first map (resp. the second)
defined in Proposition 1.1.2.13. Indeed, we have seen in Example 1.1.1.20 that any left R-module
can be seen as a (R, Z(R))-bimodule.

Only remains to check for the axioms of Z(R)-module. We consider the left version.
Let f, g ∈ HomR (M, N), r, s ∈ Z(R) and a ∈M :

(r(f + g))(a) = (f + g)(ar) = f(ar) + g(ar) = (rf)(a) + (rg)(a),

((r + s)f)(a) = f(a(r + s)) = f(ar + as) = f(ar) + f(as) = (rf)(a) + (sf)(a),

((rs)f)(a) = f(ars) = (sf)(ar) = (r(sf))(a),

(1f)(a) = f(a1) = f(a).

1.1.3 Exact sequences of modules

Definition 1.1.3.1 : Exact sequences of modules

Let R be a ring.
An exact sequence of left R-modules consists of a family (Mn)n∈Z of left R-modules together
with a family of R-linear maps

(
fn : Mn →Mn−1

)
n∈Z

:

· · · fn+2→ Mn+1
fn+1→ Mn

fn→Mn−1
fn−1→ · · ·

such that for all n ∈ Z, we have im(fn+1) = ker(fn).

Note that there is no need to label arrows that go from or to the trivial module 0 since, as we
noticed in Example 1.1.2.5, there is only one such map: the zero map.

In this definition, we assume that the sequence go on forever on both sides. However, it is often
the case that the sequences are finite for at least one of the two directions. We trust the reader in
being able to adapt the definition for such sequences.
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Proposition 1.1.3.2

Let R be a ring. Let A and B be left R-modules. Let f : A→ B be a R-linear map.
Then:

• The sequence 0→ A
f→ B is exact if and only if f is injective.

• The sequence A
f→ B → 0 is exact if and only if f is surjective.

• The sequence 0→ A
f→ B → 0 exact if and only if f is an isomorphism.

Proof. The first two assertions follow directly from Proposition 1.1.2.4. The last statement follows
from the fact that bijective is equivalent to surjective and injective.

Definition 1.1.3.3 : Short exact sequence of modules

Let R be a ring. A short exact sequence of R-modules is any exact sequence of the form:

0→ A
f→ B

g→ C → 0

where A, B and C are left R-modules and f and g are R-linear maps.

Example 1.1.3.4 : (Extension)

When we have short exact sequence 0→ A
f→ B

g→ C → 0, then we say that B is an extension
of C by A. The reason behind that name is the following. Since f is injective, we can
identify A with the submodule im(f) of B. However, by exactness, im(f) = ker(g) and g is
surjective. It follows from the first isomorphism theorem (Theorem 1.1.2.11) that C ∼= B/im(f)

where im(f) can be identified with A.
In summary, a short exact sequence enables to express that an object A can be seen as a
suboject of an object B while an object C is the quotient of that object B by that object A.
The terminology is justified by the fact that it means we extend A into B with respect to C.

Example 1.1.3.5 : (Short exact sequence from first isomorphism theorem)

If R is a ring, M and N left R-modules and f : M → N an R-linear map, then the first
isomorphism theorem (Theorem 1.1.2.11) can be expressed as saying that the following short
sequence is exact:

0→ ker(f) i→M
f→ im(f)→ 0

where i is the canonical injection of ker(f) into M and f is the corestriction of f to im(f).
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Here is a categorical generalisation of the rank-nullity theorem of linear algebra for modules:

Theorem 1.1.3.6 : (Splitting lemma)

Let R be a ring. Consider the following short exact sequence of left R-modules:

0→ A
f→ B

g→ C → 0.

The following conditions are equivalent:

(i) There exists a R-linear map r : B → A such that r ◦ f = idA.

(ii) There exists a R-linear map s : C → B such that g ◦ s = idC .

(iii) There exists an isomorphism h : B → A⊕ C such that hf is the natural injection of A

into A⊕ C and gh−1 is the natural projection of A⊕ C onto C.

Proof. An open-access proof is available on the Wikipedia page of the splitting lemma.

Definition 1.1.3.7 : Split short exact sequence of modules

A split short exact sequence of modules is any short exact sequence that satisfy one of the
equivalent conditions of the splitting lemma (Theorem 1.1.3.6).

1.1.4 Operations on submodules

Proposition 1.1.4.1 : Closure of submodules under arbitrary intersection

Let R be a ring. Let M be a left R-module. Let (Mi)i∈I be an arbitrary non-empty family
of submodules of M .
Then:

⋂
i∈I Mi is a submodule of M .

Proof. Denote by N :=
⋂

i∈I Mi. Let a, b ∈ N and r ∈ R. Then a, b ∈Mi for all i ∈ I.
Thus, a+rb ∈Mi for all i ∈ I, which exactly means that a+rb ∈ N . Finally, since all submodules

contains 0, we have 0 ∈ N . So N is a submodule of M .

Proposition 1.1.4.2 : Characterisation of submodule generated by subset

Let R be a ring. Let M be a left R-module. Let S be a subset of M .
Then, the submodule generated by S is the smallest submodule of M that contains N . In
symbols:

⟨S⟩ =
⋂

N submodule M
S⊆N

N

Proof. Recall the definition of ⟨S⟩ from Definition 1.1.1.10. Write MS the right-hand side of the
equality. Let a ∈ ⟨S⟩. Then, there exists n ∈ N, (r1, · · ·, rn) ∈ Rn and (s1, · · ·, sn) ∈ Sn such
that a =

∑n
i=1 risi. Since S ⊆MS and MS is a submodule, it follows that a ∈MS , hence ⟨S⟩ ⊆MS .

Conversely, we have already noticed that ⟨S⟩ is a submodule of M . Moreover, it contains S. Then,
since MS is the smallest submodule of M that contains N , then MS ⊂ ⟨S⟩.
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Definition 1.1.4.3 : Sum of submodules

Let R be a ring. Let M be a left R-module. Let (Mi)i∈I be a family of submodules of M .
The sum of the family (Mi)i∈I of submodules is defined as:

∑
i∈I

Mi :=
〈⋃

i∈I

Mi

〉
=


n∑

j=1
aj

∣∣∣∣∣∣ n ∈ N ∧ ∀j ∈ J1 .. nK, ∃ij ∈ I, aj ∈Mij



1.1.5 Direct sums of modules

Definition 1.1.5.1 : Direct product of modules

Let R be a ring. Let (Mi)i∈I be a non-empty family of left R-modules.
The direct product of the family is the left R-module whose underlying set is the cartesian
product

∏
i∈I Mi and whose operations are defined component-wise:

∀ (ai)i∈I , (bi)i∈I ∈
∏
i∈I

Mi, (ai)i∈I + (bi)i∈I := (ai + bi)i∈I ,

∀ (ai)i∈I ∈
∏
i∈I

Mi, ∀r ∈ R, r (ai)i∈I := (rai)i∈I .

Definition 1.1.5.2 : Direct sum of submodules

Let R be a ring. Let M be a left R-module. Let (Mi)i∈I be a non-empty family of
submodules of M .
The module M is said to be the direct sum of the family (Mi)i∈I of submodules if it verifies:

∀a ∈M, ∃!J ⊆ I, card(J) <∞ ∧ ∃! (aj)j∈J ∈
∏
j∈J

(Mj \ {0}), a =
∑
j∈J

aj .

In which case, we write M =
⊕

i∈I Mi.

Proposition 1.1.5.3 : Characterisation direct sum

Let R be a ring. Let M be a left R-module. Let (Mi)i∈I be a non-empty family of
submodules of M .
Then:

M =
⊕
i∈I

Mi ⇔ M ⊆
∑
i∈I

MI ∧ ∀i0 ∈ I, Mi0 ∩
∑
i∈I
i̸=i0

Mi ⊆ {0} .

Proof. Recall the notion of sum of submodules from Definition 1.1.4.3.
Suppose M is the direct sum. Then, it follows from the definition that every element of M is

written has a finite sum of elements of the family. By contradiction, suppose there exists i0 ∈ I such
that Mi0 ∩

∑
i∈I
i̸=i0

Mi contains element ai0 ̸= 0. Then, this element ai0 ∈M admits two different
decomposition in finite sums of elements in the submodules. Which contradicts the direct sum
assumption.

Conversely, assuming M ⊆
∑

i∈I Mi means that every element of M admits at least one decom-
position in a sum of elements of the submodules. Remains to show that this decomposition is
unique when we suppose additionally the second condition in the conjunction. By contradiction,
suppose they are two different decomposition 0 ̸= a =

∑
j∈J aj =

∑
g∈G bg as the one defined in
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Definition 1.1.5.2. Since they are different and a ̸= 0, there exists j0 ∈ J such that 0 ̸= aj0 ̸= bg for
all g ∈ G. Then, 0 ̸= aj0 =

∑
g∈G bg −

∑
j∈J
j ̸=j0

aj . It follows that 0 ̸= aj0 ∈Mj0 ∩
∑

i∈I
i ̸=j0

Mi.

Proposition 1.1.5.4 : Direct sum and direct product coincide for finite families

Let R be a ring, M be a left R-module, n ∈ N∗ and M1, · · ·, Mn be n submodules of M .
Then:

M =
n⊕

i=1
Mi ⇒ M ∼=

n∏
i=1

Mi.

Proof. Suppose that M =
⊕n

i=1 Mi. Consider the map:

f : M →
∏n

i=1 Mi

a 7→ (a1, · · ·, an)

where ai is either zero or the non-zero value in Mi appearing in the decomposition from Defini-
tion 1.1.5.2. It is an R-linear map because a + rb =

∑n
i=1 ai + r

∑n
i=1 bi =

∑n
i=1 ai + rbi.

Let (a1, · · ·, an) ∈
∏n

i=1 Mi. Then a :=
∑n

i=1 ai is such that a ∈ M and f(a) = (a1, · · ·, an).
Hence, f is surjective.

Let a ∈ ker(f), that is, f(a) = (0, · · ·, 0). This means that the subset J of indices in the definition
of the direct sum is empty. But the only element of M with such an empty decomposition is 0.
Hence, ker(f) = {0} and thus f injective.

Definition 1.1.5.5 : Direct summand of module

Let R be a ring. Let M a left R-module.
A direct summand of M is any submodule A of M such that there exists a submodule B

of M satisfying M = A⊕B.
In that case, B is called a complementary submodule of A in M .

Proposition 1.1.5.6

Let R be a ring. Let M a left R-module. Let A be a submodule of M .
Then, A is a direct summand of M if, and only if, there exists an R-linear map r : M → A

such that for all a ∈ A, r(a) = a.
In such a case, we say that A is a retract of M .

Proof. A proof of that statement can be found in [Rot09, Corollary 2.23].

1.1.6 Tensor products of modules

Definition 1.1.6.1 : Biadditive map

Let R be a ring. Let A be a right R-module and B a left R-module. Let G be an additive
abelian group.
A map f : A×B → G is said to be R-biadditive if it satisfies the following identities:

• ∀a, a′ ∈ A, ∀b ∈ B, f(a + a′, b) = f(a, b) + f(a′, b),

• ∀a ∈ A, ∀b, b′ ∈ B, f(a, b + b′) = f(a, b) + f(a, b′),

• ∀a ∈ A, ∀b ∈ B, ∀r ∈ R, f(ar, b) = f(a, rb).
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Definition 1.1.6.2 : Bilinear map

Let R be a commutative ring. Let A, B and M be R-modules.
A map f : A×B →M is said to be R-bilinear if it is R-biadditive and verifies:

∀a ∈ A, ∀b ∈ B, ∀r ∈ R, f(ar, b) = f(a, rb) = rf(a, b).

Definition 1.1.6.3 : Tensor product of modules

Let R be a ring. Let A be a right R-module and B a left R-module.
The tensor product of A and B consists of an abelian group A ⊗R B and an R-
biadditive map h : A×B → A⊗R B that satisfies the following universal property: for
every abelian group G and every R-biadditive f : A×B → G there exists a unique Z-linear
map f̃ : A⊗R B → G such that f = f̃h.

A×B A⊗R B

G

h

f

f̃

Proposition 1.1.6.4 : Uniqueness of tensor product up to isomorphism

Let R be a ring. Let A be a right R-module and B be a left R-module.
If (G, h) and (G′, h′) are tensor products of A and B, then G ∼= G′.

Proof. Apply the universal property of (G, h) to G′ and h′ : A×B → G′. Then there exists a
unique Z-linear map h̃′ : G→ G′ such that h′ = h̃′h. Apply now the universal property of (G′, h′)
to G and h : A×B → G. We thus have a unique Z-linear map h̃ : G′ → G such that h = h̃h′. In
other words, the following diagram commutes:

G

A×B G′

G

h̃′
h

h

h′

h̃

Notice how the unique Z-linear map satisfying the universal property of (G, h) for G and h is the
identity idG. In other words, h̃h̃′ = idG. In an analogous manner, one can prove that h̃′h̃ = idG′ .
This makes h̃ and h̃′ isomorphisms of Z-modules. Hence, G ∼= G′.

Proposition 1.1.6.5 : Existence of tensor product

Let R be a ring. Let A be a right R-module and B be a left R-module.
The tensor product A⊗R B of A and B exists.

Proof. Let us give a constructive proof. Take F the free abelian group with basis A×B. Denote
by S the subgroup of F generated by the union of the three following sets:

X := {(a + a′, b)− (a, b)− (a′, b) ∈ F | a, a′ ∈ A ∧ b ∈ B}

Y := {(a, b + b′)− (a, b)− (a, b′) ∈ F | a ∈ A ∧ b, b′ ∈ B}

Z := {(ar, b)− (a, rb) ∈ F | a ∈ A ∧ b ∈ B ∧ r ∈ R}
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Consider the quotient group F/S and the restriction h of the natural map π : F → F/S to the
elements in A×B. Let us show that these define a tensor product of A and B.

First, notice that, by construction, every element a, a′ ∈ A and b ∈ B satisfy the relations:

π((a + a′, b)− (a, b)− (a′, b)) = 0 because the element is in S

π((a + a′, b)− (a, b)− (a′, b)) = h(a + a′, b)− h(a, b)− h(a, b′) because π is a morphism

Thus, combining those two and writing h(c, d) =: c⊗ d, we get:

(a + a′)⊗ b = a⊗ b + a′ ⊗ b

In a similar way, we get the following relations, for all a ∈ A, b, b′ ∈ B and r ∈ R:

a⊗ (b + b′) = a⊗ b + a⊗ b′

(ar)⊗ b = a⊗ (rb)

Hence h is an R-biadditive map.
Now, let G an abelian group and f : A×B → G an R-biadditive map.
Denote by i : A×B → F the evident inclusion. By extending with linearity, there exists a unique

morphism of abelian groups φ : F → G such that the following diagram commutes:

A×B F

G

i

f
φ

In particular, ∀(a, b) ∈ A×B, f(a, b) = φ(a, b).
Notice that S ⊆ ker φ, because if we take an element in S, it is written as a sum of of elements of

elements in X ∪ Y ∪ Z, its image through φ is thus a sum of elements φ(x), where x ∈ X ∪ Y ∪ Z

then each of these elements becomes a sum of elements φ(a, b) which thus can be replaced by f(a, b);
finally, by biadditivity of f , each of these elements reduces to zero.

We can thus define a morphism of abelian groups f̂ : F/S → G as ∀x ∈ F, f̂(x + S) := φ(x). It is
indeed well-defined since for any x, y ∈ F , x+S = y+S implies that x−y ∈ S and thus, φ(x−y) = 0
because S ⊆ ker φ, and hence φ(x) = φ(y).

Now, let (a, b) ∈ A×B, then (f̂ ◦h)(a, b) = f̂(a⊗ b) = f̂((a, b) + S) = φ(a, b) = f(a, b). Therefore,
the map f̂ makes the following diagram commute:

A×B F/S

G

h

f

f̂

The uniqueness of f̂ follows from the fact that the elements of the form a ⊗ b generate F/S,
therefore taking any other morphism f̃ making the above diagram commute implies that f̂ and f̃

agree on the set of generators of F/S and are thus equal.
We can thus define the tensor product of A and B as the quotient group A⊗R B := F/S together

with the restriction to A×B of the natural projection from F to F/S.
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Proposition 1.1.6.6 : Tensor product of linear maps

Let R be a ring. Let f : A→ A′ be a morphism of right R-modules. Let g : B → B′ be a
morphism of left R-modules.
There exists a unique morphism of abelian groups:

f ⊗ g : A⊗R B → A′ ⊗R B′

a⊗ b 7→ f(a)⊗ g(b)

.

Proof. Indeed, by constructing the map:

φ : A×B → A′ ⊗R B′

(a, b) 7→ f(a)⊗ g(b)

we notice it is R-biadditive by virtue of the properties in A′ ⊗R B′ and the fact that f and g

are R-linear maps. Therefore, by the universal property defining A ⊗R B, there exists a unique
morphism of abelian groups that happen to coincide with f ⊗ g defined above.

Corollary 1.1.6.7 : Composition of tensored linear maps

Let R be a ring. Let A
f→ A′ f ′

→ A′′ be maps of right R-modules and B
g→ B′ g′

→ B′′ be maps
of left R-modules.
Then:

(f ′ ⊗ g′) ◦ (f ⊗ g) = (f ′ ◦ f)⊗ (g′ ◦ g).

Proof. The left-hand and right-hand side both send a⊗ b to (f ′ ◦ f)(a)⊗ (g′ ◦ g)(b). By uniqueness,
we conclude the equality of maps.

Proposition 1.1.6.8 : Structure on tensor product

Let R and S be rings. Let A be a right R-module and B be a left R-module.
If A is (S, R)-bimodule, then A⊗R B can be equipped with a structure of left S-module.
If B is (R, S)-bimodule, then A⊗R B can be equipped with a structure of right S-module.
In particular, A⊗R B can be seen as a left or right Z(R)-module.
In particular, if R is commutative, then A⊗R B is a R-module.

Proof. Suppose A is a (S, R)-bimodule. Then define the external law of composition on the abelian
group A⊗R B as:

s

∑
a,b

a⊗ b

 :=
∑
a,b

(sa)⊗ b.

Then:

(s + s′)(a⊗ b) = ((s + s′)a)⊗ b = (sa + s′a)⊗ b = (sa)⊗ b + (s′a)⊗ b = s(a⊗ b) + s′(a⊗ b).

s(a⊗ b + a′ ⊗ b′) = (sa)⊗ b + (sa′)⊗ b′ = s(a⊗ b) + s(a′ ⊗ b′).

(s′s)(a⊗ b) = ((s′s)a)⊗ b = (s′(sa))⊗ b = s′((sa)⊗ b) = s′(s(a⊗ b)).

1S(a⊗ b) = (1Sa)⊗ b = a⊗ b.

Hence, A⊗R B is indeed a left R-module.
The same proof can be applied mutatis mutandis to prove the second statement.



1.1. MODULE THEORY 23

The special case follows from Example 1.1.1.20.

1.1.7 Free, projective and injective modules

Definition 1.1.7.1 : Free module

Let R be a ring.
A free left R-module is any left R-module F that has a basis i.e. there exists a family (bi)i∈I

of elements of F such that:

∀a ∈ F, ∃!J ⊆ I, card(J) <∞ ∧ ∃! (rj)j∈J ∈ (R \ {0})J , a =
∑
j∈J

rjbj .

Remark 1.1.7.2 : Characterisation of free modules

Looking at the definition of free modules and the definition of direct sum (Definition 1.1.5.2),
we detect similarities. Actually, being a free module is equivalent to being isomorphic to a
direct sum of “copies” of the ground ring R. What “copy” mean here is any left R-module
isomorphic to R as a module over itself. In summary:

F is a free R-module ⇔ ∃I, F ∼=
⊕
i∈I

R.

Proposition 1.1.7.3

Let R be a ring. Every left R-module is a quotient of a free left R-module.

Proof. Let M be a left R-module. Take X ⊆M a generating set of M , i.e. ⟨X⟩ = M . Such a set
does exist since M is such one. Consider now F the free module on X, i.e. F :=

⊕
x∈X R. Denote

by (bx)x∈X the basis of F . Then, since X generates M , the following map extended by linearty is
surjective:

φX : F →M

bx 7→ x

.

By the first isomorphism theorem (Theorem 1.1.2.11), it follows that M ∼= F/ker(φX ), hence the
result.

Definition 1.1.7.4 : Projective module

Let R be a ring.
A projective left R-module is any left R-module P such that for any surjective R-linear
map p : A→ B and any R-linear map f : P → B, there exists a R-linear map g : P → A

such that f = p ◦ g.

P

A B 0

f
g

p
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Theorem 1.1.7.5 : (Characterisation of projective modules)

Let R be a ring. Let P be a left R-module.
Then, the following conditions are equivalent:

(i) P is projective,

(ii) if ε : M → P is a surjective R-linear map, then there exists an R-linear map η : P →M

such that εη = idP ,

(iii) P is a direct summand in every module of which it is a quotient,

(iv) P is a direct summand in a free module.

Proof. A complete proof can be found in [HS97, Theorem 4.7].

Remark 1.1.7.6 : Characterisation projective in terms of exactness of Hom functor

Yet another characterisation for being a projective module is expressed in terms of the
exactness of the HomR (P,−) functor. However, we have not yet introduced those notions.
For later reference, this just means that every short exact sequence:

0→ A
f→ B

g→ C → 0

remains an exact sequence under the action of the functor:

0→ HomR (P, A) f∗→ HomR (P, B) g∗→ HomR (P, C)→ 0

Definition 1.1.7.7 : Injective module

Let R be a ring.
An injective left R-module is any left R-module I such that for every injective R-linear
map i : B → A and every R-linear map f : B → I, there exists a R-linear map g : A→ I

such that f = g ◦ i.

0 B A

P

i

f
g

1.2 Non-commutative algebra

1.2.1 Associative unitary algebras

Definition 1.2.1.1 : Associative unitary algebra

Let K be a commutative ring.
An associative unitary K-algebra is any K-module A whose underlying additive abelian
group can also be equipped with a structure of unital ring and that satisfy the following
compatibility condition:

∀λ ∈ K, ∀x, y ∈ A, λ(xy) = (λx)y = x(λy)
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Remark 1.2.1.2 : Axioms versus ring-homomorphism on center

Now, suppose we are given a unital ring A. To define a structure of K-algebra on A

one can simply provide a unital-ring-homomorphism η : K → Z(A), where Z(A) is the
center of A (see Example 1.1.1.20). Indeed, the scalar multiplication is then given
by λx := η(λ)x. Conversely, if the scalar multiplication is defined, construct the unital-ring-
homomorphism η(λ) := λ1A.

Example 1.2.1.3 : (Ring as algebra over itself)

Let K be a commutative ring. As we have seen in Example 1.1.1.7, we can view K as a
module over itself. Then, it suffices to show that the compatibility condition is verified
which is trivial since the scalar multiplication and the ring multiplication coincide, both are
associative and K is commutative.

Example 1.2.1.4 : (Tensor algebra)

Let K be a field. Let V be a finite-dimensional K-vector space. The tensor algebra over V

is defined as:
T (V ) := K⊕ V ⊕ V ⊗2 ⊕ V ⊗3 ⊕ · · · =

⊕
n∈N

V ⊗n.

where V ⊗n is the n-fold tensor product on V over K.
The multiplication is given by the tensor product V ⊗i ⊗ V ⊗j → V ⊗i+j .
The tensor algebra is a fundamental notion for non-commutative algebra.

Definition 1.2.1.5 : Augmented algebra

Let K be a field.
An augmented algebra over K is any associative unitary K-algebra A together with a
homomorphism of associative unitary K-algebras ε : A→ K. We then have the vector-space
decomposition:

A = K1A ⊕ ker(ε).

The map ε is then called the augmentation map and ker(ε) is the augmentation ideal.

Definition 1.2.1.6 : Graded connected algebra

Let K be a field.
A graded connected K-algebra is any graded K-algebra whose zero-component is one-
dimensional and generated by the unit element 1A. What it means to be graded is that
there exists a sequence (An)n∈N of K-vector spaces such that:

A ∼=
⊕
n∈N

An and ∀m, n ∈ N, AnAm ⊆ An+m

The zero-component A0 admit 1A as a basis in such a way that A0 ∼= K1A.

Remark 1.2.1.7 : Natural augmentation on graded connected algebras

Any graded connected K-algebra can be augmented naturally by the projection of A

onto A0 ∼= K. The augmentation ideal is then A+ :=
⊕

n⩾1 An.
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Definition 1.2.1.8 : Homogeneous algebra

Let K be a field. Let N ⩾ 2 be an integer.
An N -homogeneous K-algebra is a graded connected algebra A =

⊕
n∈N An such that there

exists a surjective homomorphism of K-algebras π : T (A1)→ A (where T (A1) is the tensor
algebra over A1) whose kernel is generated as a two-sided ideal by elements of A⊗N

1 .

Definition 1.2.1.9 : Quadratic algebra

Let K be a field.
A quadratic K-algebra is a 2-homogeneous K-algebra.

1.2.2 Free algebras

Definition 1.2.2.1 : Construction of free algebra on monoid

Let M be a monoid written multiplicatively. Let K be a commutative ring.
The free K-algebra over the monoid M is the set KM of finite formal linear combinations of
elements in M with coefficients in K, where addition and scalar multiplication are defined
component-wise and the ring multiplication is given by distributivity and the operation on
the monoid.

More precisely, denote:

KM :=
{∑

x∈N

λxx

∣∣∣∣∣ N ⊆M ∧ card(N) <∞ ∧ ∀x ∈ N, λx ∈ K

}

the set of finite formal linear combinations of elements in M with coefficients in K.
For any element a =

∑
x∈N λxx ∈ KM and any element x ∈ M , write coefa (x) := λx the

coefficient associated to x in the linear combination describing a if it appears, and 0 otherwise.
Then define the support of a as the subset of M :

supp (a) := {x ∈M | coefa (x) ̸= 0} .

By definition, it will always be a finite set. It follows that any element a ∈ KM is written as:

a =
∑

x∈supp(a)

coefa (x) x.

Then, we define addition on KM as follows:

∀a, b ∈ KM, a + b :=
∑

x∈supp(a)∪supp(b)

(coefa (x) + coefb (x)) x.

Scalar multiplication is also defined component-wise as such:

∀a ∈ KM, ∀λ ∈ K, λa :=
∑

x∈supp(a)

(λ× coefa (x)) x.

Finally, the ring multiplication is given by:

∀a, b ∈ KM, ab :=
∑
z∈M

(∑
xy=z

(coefa (x)× coefb (y))
)

z.
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This is well-defined because for all z ∈M there exist only finitely many x, y ∈M such that xy = z

and coefa (x) ̸= 0 or coefb (y) ≠ 0. Moreover, since supp (a) and supp (b) are finite, there will
only be finitely many z ∈ M such that there exist x, y ∈ M with xy = z and coefa (x) = 0
or coefb (y) = 0.

It is then routine to check that those operations define a structure of associative unitary K-algebra
on KM .

Example 1.2.2.2 : (Polynomial algebra)

Given n ∈ N∗ indeterminates x1, · · ·, xn, we can consider the free commutative monoid:

[x1, · · ·, xn] :=
{

n∏
i=1

xei
i

∣∣∣∣∣ ∀i ∈ J1 .. nK, ei ∈ N

}

where the operation is defined as:(
n∏

i=1
xei

i

)(
n∏

i=1
xfi

i

)
:=

n∏
i=1

xei+fi

i .

The free algebra on [x1, · · ·, xn] is then the polynomial algebra K[x1, · · ·, xn]. We say it is
univariate if n = 1 and multivariate otherwise.
No matter the value of n, the polynomial algebra is commutative (i.e. the ring multiplication
is commutative).

Example 1.2.2.3 : (Polynomial algebra with non-commuting indeterminates (a.k.a. free
algebra))

Given a non-empty set X (called alphabet in that context) of indeterminates (also called
here letters), we can construct the free monoid of words over X:

⟨X⟩ := {x1 · · ·xn | n ∈ N ∧ ∀i ∈ J1 .. nK, xi ∈ X} .

where the operation is defined as the concatenation of words:

∀x1 · · ·xn, y1 · · · ym ∈ ⟨X⟩ , (x1 · · ·xn)(y1 · · · ym) := x1 · · ·xny1 · · · ym.

When X is a singleton, the free algebra K ⟨X⟩ over the monoid ⟨X⟩ is equal to the univariate
polynomial algebra.
Otherwise, if X is not a singleton, the free algebra K ⟨X⟩ is not commutative because the
letters do not commute.
Given any non-empty set X, we call the free K-algebra over the set X the free algebra over
the monoid ⟨X⟩, thus denoted K ⟨X⟩.
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Proposition 1.2.2.4 : Free algebra and tensor algebra isomorphic

Let K be a field. Let X be a finite set.
Then, the free K-algebra over X and the tensor algebra over free K-vector space KX are
isomorphic:

K ⟨X⟩ ∼= T (KX).

Proof. For each n ∈ N, we have the following isomorphism of vector spaces:

φn : KX(n) → KX⊗n

x1 · · ·xn 7→ x1 ⊗ · · · ⊗ xn.

where X(n) is the set of words in ⟨X⟩ that are of length n.
Combining those maps into a single map

⊕
n∈N φn we obtain an isomorphism of associative

unitary K-algebras.

Definition 1.2.2.5 : Monomial order

Let M be a monoid written multiplicatively. A monomial order on M is any well-order ≺
such that it is compatible with left- and right-multiplication of the monoid.
Explicitly, well-order means total order such that every descending sequence is stationary:

∀ (xn)n∈N MN, (∀n ∈ N, xn+1 ⪯ xn) ⇒ ∃n0 ∈ N, ∀n ⩾ n0, xn0 = xn,

and compatibility with multiplication means:

∀x, y, u, v ∈M, x ≺ y ⇒ uxv ≺ uyv.

Example 1.2.2.6 : (Deglex order)

Given an alphabet X that is equipped with a total order ≺, the degree lexicographic order
(or deglex order) is a monomial order defined on ⟨X⟩ by:

x1 · · ·xn ≺deglex y1 · · · ym ⇔ n < m ∨

(n = m ∧ ∃i0 ∈ J1 .. nK, ∀i < i0, xi = yi ∧ xi0 ≺ yi0) .

Definition 1.2.2.7 : Leading monomial, leading coefficient

Let K be a commutative ring. Let X be a non-empty set. Let K ⟨X⟩ be the free K-algebra
over X. Let ≺ be a monomial order on ⟨X⟩.
For any non-zero f ∈ K ⟨X⟩, define the leading monomial of f as:

LM (f) := max
≺

supp (f) ,

and the leading coefficient of f as:

LC (f) := coeff (LM (f)) .

They exist since supp (f) is finite, ≺ is a total order and f is non-zero.
For any non-empty set F of non-zero polynomials in K ⟨X⟩, we let:

LM (F ) := {LM (f) | f ∈ F} .
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1.2.3 Presentations

Proposition 1.2.3.1 : Every algebra is quotient of the free algebra

Let K be a commutative ring. Let A be an associative unitary K-algebra.
Then, there exists a non-empty set X and a two-sided ideal I of K ⟨X⟩ such that:

A ∼= K⟨X⟩/I.

Proof. The proof is the same as for free modules (Proposition 1.1.7.3) mutatis mutandis swapping
free modules with free algebras and the kernel of the map is a two-sided ideal instead of simply a
submodule.

Definition 1.2.3.2 : Presentation of algebras

Let K be a commutative ring. Let A be an associative unitary K-algebra.
A presentation (by generators and relations) of A is any non-empty set X and any set R of
polynomials from K ⟨X⟩ together with an isomorphism of K-algebras:

A ∼= K⟨X⟩/I(R).

where I(R) is the two-sided ideal generated by R in K ⟨X⟩.
We denote the presentation by ⟨X|R⟩.

Definition 1.2.3.3 : Monomial presentation

Let K be a commutative ring. Let A be an associative unitary K-alegbra.
A presentation ⟨X|R⟩ of A is monomial if the elements of R are monomials:

R ⊆ ⟨X⟩ .

If such a presentation of A exists, A is said to be a monomial algebra.

Definition 1.2.3.4 : Homogeneous presentation

Let K be a commutative ring. Let A be an associative unitary K-alegbra.
A presentation ⟨X|R⟩ of A is homogeneous if the elements of R are of homogeneous polyno-
mials of same degree:

∃N ⩾ 2, R ⊆ KX(N)

where X(N) is the set of monomials of X of degree N .
If such a presentation of A exists, then A is an N -homogeneous algebra (Definition 1.2.1.8).

Definition 1.2.3.5 : Homogeneous monomial presentation

Let K be a commutative ring. Let A be an associative unitary K-alegbra.
A presentation ⟨X|R⟩ of A is homogeneous monomial if it is both homogeneous and monomial:

∃N ⩾ 2, R ⊆ X(N)

where X(N) is the set of monomials on X of degree N .
If such a presentation of A exists, A is said to be a N -homogeneous monomial algebra.
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1.2.4 Non-commutative Gröbner bases

In this section, we consider associative unitary algebras over a field K. In particular, we fix
throughout this subsection, a non-empty set X and the free algebra K ⟨X⟩ on X.

Denote by m ⊆ m′ the relation of subwords on ⟨X⟩:

∀m, m′ ∈ ⟨X⟩ , m ⊆ m′ ⇔ ∃a, b ∈ ⟨X⟩ , amb = m′.

Proposition 1.2.4.1 : Multivariate division algorithm

Let ≺ be a monomial order on ⟨X⟩. Let f, g1, g2, · · ·, gn ∈ K ⟨X⟩.
There exists a1, · · ·, an, b1, · · ·, bn ∈ K ⟨X⟩ and r ∈ K ⟨X⟩ such that:

• f = r +
∑n

i=1
∑ni

j=1 ai,jgibi,j ,

• ∀i ∈ J1 .. nK, LM
(∑ni

j=1 ai,jgibi,j

)
⪯ LM (f),

• ∀m ∈ supp (r) , ∀i ∈ J1 .. nK, LM (gi) ̸⊆ m.

In such a case, we say that f reduces to r through G := {g1, · · ·, gn} and we denote it f
∗→
G

r.

Proof. Consider Algorithm 1. It provides a constructive way of defining the polynomials stated to
exist in the proposition.

Algorithm 1: Division algorithm for non-commutative polynomials
Input: f, g1, · · ·, gn ∈ K ⟨X⟩, ≺ monomial order on ⟨X⟩.
Output: r, (ai,j) 1⩽i⩽n

1⩽j⩽ni

, (bi,j) 1⩽i⩽n
1⩽j⩽ni

∈ K ⟨X⟩ satisfying the conditions of Proposition 1.2.4.1.

1 r ← f
2 (n1, · · ·, nn)← (0, · · ·, 0)
3 while ∃m ∈ supp (r) ,∃i ∈ J1 .. nK,∃a, b ∈ ⟨X⟩ , m = aLM (gi) b do

4 r ← r − coefr (m)
LC (gi)

agib

5 ai,ni+1 ←
coefr (m)
LC (gi)

a

6 bi,ni+1 ← b
7 ni ← ni + 1
8 end
9 return r, (ai,j) 1⩽i⩽n

1⩽j⩽ni

, (bi,j) 1⩽i⩽n
1⩽j⩽ni

Definition 1.2.4.2 : Monomial ideal

A monomial ideal in ⟨X⟩ is a subset I ⊆ ⟨X⟩ stable by left- and right-multiplication:

∀m ∈ I, ∀a, b ∈ ⟨X⟩ , amb ∈ I.

If R is a subset of I such that ∀m ∈ I, ∃r ∈ R,∃a, b ∈ ⟨X⟩ , m = arb, then we say that R

generates I as a monomial ideal.
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Example 1.2.4.3 : (Monomial ideal from algebraic ideal)

If I is a two-sided ideal of K ⟨X⟩ and ≺ is a monomial order, then the set LM (I) of leading
monomials with respect to ≺ of polynomials in I is a monomial ideal.

Definition 1.2.4.4 : Non-commutative Gröbner basis

Let I be a two-sided ideal of K ⟨X⟩. Let ≺ be a monomial order on ⟨X⟩.
A subset G of I is called a non-commutative Gröbner basis of I with respect to ≺ if the
set LM (G) generates LM (I) as a monomial ideal.

Definition 1.2.4.5 : S-polynomial

Let f, g ∈ K ⟨X⟩.
An S-polynomial of f and g is a polynomial S such that there exists a, b, c ∈ ⟨X⟩ with b ̸= 1
and:

(i) either LM (f) = ab and LM (g) = bc in which case S = 1
LC(f) fc− 1

LC(g) ag,

(ii) or LM (f) = abc and LM (g) = b in which case S = 1
LC(f) f − 1

LC(g) agc.

Theorem 1.2.4.6 : (Buchberger criterion, non-commutative case)

Let I be a two-sided ideal of K ⟨X⟩. Let G ⊆ I. Let ≺ be a monomial order on ⟨X⟩.
Then: G is a non-commutative Gröbner basis of I with respect to ≺ if and only if for any
S-polynomial S between elements of G, we have S

∗→
G

0.

Proof. See [Mor94, Theorem 4.9].

Definition 1.2.4.7 : Minimal non-commutative Gröbner basis

Let I be a two-sided ideal of K ⟨X⟩. Let G ⊆ I. Let ≺ be a monomial order on ⟨X⟩.
The set G is a minimal non-commutative Gröbner basis of I with respect to ≺ if it is a
non-commutative Gröbner basis of I w.r.t. ≺ and:

∀g1, g2 ∈ G, g1 ̸= g2 ⇒ LM (g1) ̸⊆ LM (g2) .

Proposition 1.2.4.8 : Minimal generating set for leading monomial ideal

Let I be a two-sided ideal of K ⟨X⟩. Let ≺ be a monomial order on ⟨X⟩.
For any two minimal non-commutative Gröbner bases G1 and G2 of I w.r.t. ≺, we have:

LM (G1) = LM (G2) .

Proof. By contradiction, suppose there exists a non-zero polynomial g ∈ G1 with LM (g) /∈ LM (G2).
Then, we show that the monomial ideals generated by G1 and by G2 are different, denoted I1

and I2 respectively:
• Suppose there is an element g′ ∈ G2 such that and LM (g) ⊊ LM (g′) (resp. LM (g′) ⊊ LM (g)).

By minimality of the bases, LM (g) /∈ I2 (resp. LM (g′) /∈ I1). So I1 ̸= I2.
• Suppose there is no element g′ ∈ G2 such that LM (g) ⊆ LM (g′) nor LM (g′) ⊆ LM (g).

Then, LM (g) /∈ I2. So I1 ̸= I2.
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Since G1 and G2 are by hypothesis both non-commutative Gröbner bases of I, we were supposed
to have I1 = LM (I) = I2. But in both cases, I1 ̸= I2. So one of them is not a non-commutative
Gröbner basis of I.

Definition 1.2.4.9 : Reduced non-commutative Gröbner basis

Let I be a two-sided ideal of K ⟨X⟩. Let G ⊆ I. Let ≺ be a monomial order on ⟨X⟩.
The set G is a reduced non-commutative Gröbner basis of I with respect to ≺ if it is a
minimal non-commutative Gröbner basis of I w.r.t. ≺ and:

∀g1, g2 ∈ G, g1 ̸= g2 ⇒ ∀m ∈ supp (g2) , LM (g1) ̸⊆ m.

Proposition 1.2.4.10 : Existence and uniqueness of reduced non-commutative Gröbner
basis

Let I be a two-sided ideal of K ⟨X⟩. Let ≺ be a monomial order on ⟨X⟩.
There exists a unique reduced non-commutative Gröbner basis of I w.r.t. ≺.

Proof. See [Mor94, Proposition 1.5].

Proposition 1.2.4.11 : Decomposition according to a presentation

Let I be a two-sided ideal of K ⟨X⟩. Let ≺ be a monomial order on ⟨X⟩.
Then, we have the following K-vector space decomposition:

K ⟨X⟩ ∼= I ⊕KO(I)

where O(I) := ⟨X⟩ \ LM (I).

Proof. See [Mor94, Theorem 1.3].



Chapter 2

Basics of category theory

Category theory has emerged in parallel of the efforts made towards homology theory in algebraic
topology, and later in homological algebra, during the second half of the xx’th century. The birth
of the field is attributed to the 1945 article of Eilenberg and Mac Lane [EM45] where they
describe the basic definitions of categories and functors in order to study what they call natural
transformations and, in particular, natural equivalences.

The framework proposed by category theory is particularly well-suited to study algebraic structures
in an abstract way, allowing one to enunciate general theorems with only a single proof about
different domains of applications such as group theory, ring theory, commutative algebra, etc.

The reference book for a graduate-level introduction to category theory is Mac Lane’s own
Categories for the working mathematician [ML98] originally published in 1971. Another standard
resource on the subject containing subsequent topics developed in the field is Kashiwara’s and
Schapira’s Categories and sheaves [KS06]. In particular, it deals with the concept of derived
categories which is a concept central in the general understanding of homological algebra.

As it is a perfect example of how powerful category theory can be, I studied the concept of
universal properties in connection with the Yoneda lemma and the theory of adjoint functors. The
resources best-suited to explore these ideas are [Rie16] for a formal approach and [Per19] for a more
intuitive depiction with plenty of concrete examples from different areas of mathematics and even
related sciences. However, I fail to have time to make a written account on what I have learnt on
that matter.

2.1 Basic definitions

To introduce the basic definitions of category theory, we can place ourselves in standard set theory
(ZFC for instance). However, when we are concerned about the foundations of the theory, it is
somewhat more interesting to reason in terms of universes. These are sets closed under any kind
of basic set-theoretic operations. The idea is to rid ourselves of proper classes and work solely in
given universes where everything is sets. An element of a universe U is called a U-set. Any set
in bijection with U -set is called a U -small set. In terms of classes and sets, a set is a U -small set
and a class is a set in bijection with a subset of U . Every set is class but not every class is a set,
hence the existence of proper classes. Even though this presentation with universes is generally
more well-suited for deep-dive study of category theory, most resources use the classes terminology
and so will we in this thesis.

This discussion is important for what follows as we will often consider proper classes such as the
class of all sets, which famously is not a set, the class of all groups, of all topological spaces, etc.

33
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2.1.1 Categories

Definition 2.1.1.1 : Category

A (locally small) category consists of:

• a class C of objects,

• a set HomC (A, B) of morphisms, for every ordered pair (A, B) of objects,

• a map ◦ : HomC (A, B)×HomC (B, C)→ HomC (A, C) called composition, for every
ordered triple (A, B, C) of objects,

such that they verify the following axioms:

(i) Hom-sets are pairwise disjoint:

∀A, B, A′, B′ ∈ C, (A ̸= A′ ∨ B ̸= B′) ⇒ Hom (A, B) ∩Hom (A′, B′) = ∅.

(ii) There exists an identity morphism for every object:

∀A ∈ C, ∃1A ∈ Hom (A, A) , ∀B ∈ C,∀f ∈ Hom (A, B) ,∀g ∈ Hom (B, A) ,

1A ◦ g = g ∧ f ◦ 1A = f.

(iii) The composition is associative:

∀A, B, C, D ∈ C, ∀f ∈ Hom (A, B) ,∀g ∈ Hom (B, C) ,∀h ∈ Hom (C, D) ,

h ◦ (g ◦ f) = (h ◦ g) ◦ f.

We generally denote with the same symbol the category and the class of its objects.
We write f : A→ B instead of f ∈ HomC (A, B).

Example 2.1.1.2 : (Category of all sets)

Denote by Sets the category whose objects class is the proper class of all sets and for
every sets A and B the set HomSets (A, B) of morphisms is the set of all maps from A

to B. Composition is then given by map composition. The identity 1A on A is given by the
identity map idA and composition of maps is well-known to be associative.

Example 2.1.1.3 : (Category of all groups)

Denote by Groups the category of all groups with morphisms the homomorphisms of
groups. Once again, the composition is simply map composition and identities are identity
homomorphisms.

Example 2.1.1.4 : (Category of all topological spaces)

Denote by Top the category of all topological spaces with morphisms the continuous maps
from a space to another. Yet again, the composition is given by map composition and
identities are identity maps.

So far, we have only provided examples where objects are just sets with some structure and
morphisms maps with some additional properties. Consider now the following example:
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Example 2.1.1.5 : (Preorders as categories)

Let (P,≲) be a preordered set i.e. ≲ is reflexive and transitive.
Define the category, also denoted P , whose objects are elements of P and whose morphisms
are given as follows:

∀a, b ∈ P, HomP (a, b) =

{(a, b)} if a ≲ b,

∅ otherwise.

Composition is defined by the following rule: (a, b) ◦ (b, c) := (a, c).
Identities are guaranteed by reflexivity of ≲ and associativity is verified thanks to transitivity
of ≲.

Example 2.1.1.6 : (Monoids as categories)

Let (M, ⋆) be a monoid. We can define the following category, also denoted M , that contains
a single object • and the morphisms are given by the elements of M . Composition is then
defined by the monoid operation:

∀a, b ∈ HomM (•, •) , a ◦ b := a ⋆ b.

The single identity morphism is given by the identity element of the monoid. The associativity
of composition follows directly from the associativity of the monoid operation.

Now, let us introduce the main category used in homological algebra:

Example 2.1.1.7 : (Categories of all modules)

Let R be a ring. Denote by ModR (resp. ModR) the category whose objects are all
left (resp. right) R-modules (Definition 1.1.1.1) and whose morphisms are R-linear maps
(Definition 1.1.2.1). The composition is given by map composition.
This does form a category since the identity maps are R-linear maps (Example 1.1.2.6) and
map composition is associative.
Similarly, if S is a ring, denote by ModR S the category of all (R, S)-bimodules and whose
morphisms are left R-linear maps that are also right S-linear.

Definition 2.1.1.8 : Subcategory

Let C be category.
A subcategory of C consists of:

• a subclass D of the class of objects in C,

• a subset HomD (A, B) of HomC (A, B) for every ordered pair (A, B) of objects in D.

such that:

(i) The identities are kept:

∀A ∈ D, 1A ∈ HomD (A, A) .

(ii) The hom-sets of the subcategory are closed under composition:

∀A, B, C ∈ D, ∀(f, g) ∈ HomD (A, B)×HomD (B, C) , g ◦ f ∈ HomD (A, C) .
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Definition 2.1.1.9 : Full subcategory

A subcategory D of a category C is called full if:

∀A, B ∈ D, HomD (A, B) = HomC (A, B) .

Example 2.1.1.10 : (Category of all abelian groups)

Recall the category Groups of all groups from Example 2.1.1.3. Consider now only the
abelian groups with the group-homomorphisms between them. This defines a full subcategory
of Groups that we denote by Ab.

Example 2.1.1.11 : (Submonoid)

Let M be the category associated to a monoid (M, ⋆) as in Example 2.1.1.6. Then, a
non-empty subcategory of M defines a submonoid of (M, ⋆) and vice versa. In particular,
this can yield subcategories that are not full.

One powerful concept in category theory is duality, the notion of “reversing all arrows”. This
starts with the notion of dual category:

Definition 2.1.1.12 : Dual category

Let C be a category whose composition is denoted by ◦.
The dual category of C is the category Cop whose objects are the same as C, whose morphisms
hom-sets are defined as HomCop (A, B) := HomC (B, A) and whose composition

op
◦ is defined

as g
op
◦ f := f ◦ g. To every morphism f in C, write fop for the associated morphism in the

dual category.

The main interest of duality is that most definitions in category theory are defined solely in terms
of arrows and therefore often admits a dual definition that consists of the same statement but with
all arrows reversed. The object from the dual definition corresponds to an object for the original
definition but in the dual category. Therefore, proving a theorem for a “dualisable” definition for
all categories implies that this theorem is also true for the dual category and thus for the dual
definition as well.

2.1.2 Functors
Definition 2.1.2.1 : Functor

Let C and D be two categories.
A functor T from C to D consists of:

• a map T of classes that associates to every object A ∈ C a unique object T (A) ∈ D,

• for every A, B ∈ C, a map T : HomC (A, B)→ HomD (T (A), T (B)).

verifying the axioms:

(i) Identity morphisms are preserved: ∀A ∈ C, T (1A) = 1T (A).

(ii) Composition is preserved:

∀A, B, C ∈ C, ∀f ∈ Hom (A, B) ,∀g ∈ Hom (B, C) , T (g ◦ f) = T (g) ◦ T (f).
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A contravariant functor from C to D is a functor T from Cop to D. It defines the maps:

T : HomC (A, B)→ HomD (T (B), T (A)),

and verifies the property of reversing composition instead of preserving it:

T (g ◦ f) = T (f) ◦ T (g).

When we wish to emphasise that a functor is not contravariant we say that it is covariant.

Definition 2.1.2.2 : Full, faithful, essentially surjective

Let T : C → D be a functor between two categories.
It is said that T is:

• full if for every A, B ∈ C, the map T : HomC (A, B)→ HomD (T (A), T (B)) is surjec-
tive,

• faithful if for every A, B ∈ C, the map T : HomC (A, B)→ HomD (T (A), T (B)) is
injective,

• fully faithful if it is both full and faithful,

• essentially surjective if for every X ∈ D, there exists an object A ∈ C such that T (A)
is isomorphic to X in D.

Example 2.1.2.3 : (Identity functor)

The identity functor IC on a category C assigns each object and each morphism to itself. It
is covariant. It is fully faithful and essentially surjective.

Example 2.1.2.4 : (Dual functor)

The dual functor is defined as the contravariant functor op : C → Cop defined by the identity
of Cop. Thus, it is also fully faithful and essentially surjective.

Example 2.1.2.5 : (Embedding functor)

Let C be a category and D be a subcategory.
Then, the restriction of the identity functor to the objects and morphisms of D yields a new
functor, called the embedding functor of D into C. It is faithful. If D is a full subcategory, it
is also full.

Example 2.1.2.6 : (Covariant Hom functor for modules)

Let A ∈ ModR be a left R-module. Define the following functor TA:

• ∀B ∈ ModR , TA(B) := HomR (A, B) where HomR (A, B) is the set of R-linear
maps from A to B,

• ∀f : B → B′, TA(f) =: f∗ : HomR (A, B)→ HomR (A, B′) , g 7→ f∗(g) = f ◦ g.

This defines a covariant functor called covariant Hom functor and denoted HomR (A,−).
According to Proposition 1.1.2.14, the sets HomR (A, B) for B ∈ ModR are actually Z(R)-
module. Hence: HomR (A,−) : ModR → ModZ(R) .
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Example 2.1.2.7 : (Contravariant Hom functor for modules)

Let B ∈ ModR be a left R-module. Define the following functor TB :

• ∀A ∈ ModR , TB(A) := HomR (A, B),

• ∀f : A→ A′, TB(f) =: f∗ : HomR (A′, B)→ HomR (A, B) , g 7→ f∗(g) = g ◦ f .

This defines a contravariant functor called contravariant Hom functor and that we denote
by HomR (−, B). Proposition 1.1.2.14 allows us to obtain the functor:

HomR (−, B) : ModR
op → ModZ(R)

Example 2.1.2.8 : (Tensor product functor)

Let A ∈ModR be a right R-module. Define the functor TA as:

• ∀B ∈ ModR , TA(B) := A⊗R B,

• ∀f ∈ Hom Mod
R

(B, B′) , TA(f) =: A⊗ f := idA⊗f (see Proposition 1.1.6.6).

This functor is covariant and is called the tensor product functor by A on the left and is
denoted: A⊗R −.
Similarly, with B ∈ ModR a left R-module, we can define a covariant called the tensor
product by B on the right denoted by −⊗R B.
In summary, according to Proposition 1.1.6.8:

A⊗R − : ModR → ModZ(R) , A⊗R f := idA⊗f.

−⊗R B : ModR → ModZ(R) , f ⊗R B := f ⊗ idB .

Example 2.1.2.9 : (Forgetful functors)

There exists a wide range of functors called forgetful functors. The general idea is that it
takes objects from some category and remove (“forget”) some structure on it. For instance,
consider the forgetful functor for groups: Groups→ Sets that associates to each group its
underlying set and to each group-homomorphism the underlying set-theoretic map. Plenty
of other forgetful functors, such as:

• Ab→ Groups,

• ModR → Ab,

• Top→ Sets.

Proposition 2.1.2.10 : Composition of functors

Let C, C′ and C′′ three categories.
If T : C → C′ and S : C′ → C′′ are functors, then the following is also a functor:

S ◦ T : C → C′′

A 7→ S(T (A)) for objects,
f 7→ S(T (f)) for morphisms.
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2.1.3 Natural transformations
Definition 2.1.3.1 : Natural transformations

Let S, T : C → D be functors.
A natural transformation τ from S to T is a family (τA)A∈C of morphisms in D such
that τA : S(A)→ T (A) and for all f : A→ A′ in C :

T (f) ◦ τA = τA′ ◦ S(f)

S(A) S(A′)

A A′

T (A) T (A′)

S(f)

τA τA′

T

f

S

T

S

T

S

T (f)

A natural equivalence is a natural transformation τ = (τA)A∈A such that for any A ∈ C the
component τA is an isomorphism in D. In such case, we also say that T and S are naturally
isomorphic and that τ is a natural isomorphism.

This idea behind natural transformations is to formalise the notion of “canonical” constructions,
i.e. constructions that can be performed on all alike objects in the same abstract way and without
making use of special “presentations” of the data manipulated.

Example 2.1.3.2 : (Determinant [ML98])

Let K be a commutative ring. Let n ∈ N∗ be a positive integer.
Denote by GLn(K) the set of n×n invertible matrices with coefficients in K. Write K× the
set of units for the ring multiplication. The determinant of a matrix M is written detK M .
The determinant is a natural transformation between the following two functors:

GLn(−) : ComRings→ Groups (−)× : ComRings→ Groups.

GLn(K) GLn(K ′)

K K ′

K× (K ′)×

GLnf

detK detK′

(−)×

f

GLn(−)

(−)×

GLn(−)

(−)×

GLn(−)

f×

Example 2.1.3.3 : (Double dual [EM45])

Let K be a field.
If V is finite-dimensional K-vector space, write V ∗∗ = HomK (HomK (V,K) ,K) its double
dual. The double dual is functorial (because it is the composition of two contravariant Hom
functors).
Eilenberg and Mac Lane have proven in [EM45] that the double dual functor is naturally
isomorphic to the identity functor on VectK, the category of all finite-dimensional K-vectors
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spaces.

What follows is a (somewhat naive) attempt to show that the equivalence between the representa-
tions of groups and the structure of modules on the group-algebras as exposed in Example 1.1.1.8
is natural. This was a proof I made at the start of my internship as an exercise. The proof lasts
until page 44, it is long and technical, but all steps are routine.

For any k-vector space V ,
giving a representation ρ : G→ Aut(V ) of a group G

is naturally equivalent to
equipping V with a structure of k[G]-module for that same group G.

where

• Aut(V ) denotes the group of automorphisms on V (equipped with composition)

• k[G] denotes the group-ring of G over k, i.e. the set of finite formal linear combinations of
elements in G with coefficients in k.

Let us fix k a field and V a k-vector space. They are fixed for the whole duration of the proof.
The statement we wish to prove is formalised in terms of a natural equivalence as follows:

The following map is an isomorphism in Sets, natural in the group G:

τG : Hom (G, Aut(V ))→ ModMulL(k[G], V )
ρ : G→ Aut(V ) 7→ ℓρ : k[G]× V → V(

g =
∑

g λg.g, v
)
7→ ℓρ(g, v) :=

∑
g λg [ρ(g)(v)]

where

• Hom (G, Aut(V )) denotes the set of homomorphism of groups from G to Aut(V ),

• ModMulL(k[G], V ) denotes the set of external laws of composition on V over k[G] that
satisfy the axioms of the left k[G]-module for V and such that if ℓ ∈ ModMulL(k[G], V ) then
∀λ ∈ k, ∀v ∈ V, ℓ(λ.1G, v) = λv in V .

Let G be a group.
Let us verify the well-definedness and closure of τG (i.e. τG does take values in the target

object). Let ρ : G→ Aut(V ) be a representation of G in V . Then ℓρ is external law of composition
(straightforward since V is a k-vector space) and it satisfies the axioms making V a left k[G]-module:
let u, v ∈ V , g1 =

∑
g λg.g ∈ k[G] and g2 =

∑
h µh.h ∈ k[G]:

ℓρ (g1, u + v) =
∑

g

λg [ρ(g)(u + v)]

=
∑

g

λg ([ρ(g)] (u) + [ρ(g)] (v)) for ρ(g) is a morphism on V

=
∑

g

λg [ρ(g)] (u) +
∑

g

λg [ρ(g)] (v) in V

ℓρ (g1, u + v) = ℓρ (g1, u) + ℓρ (g1, v)
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ℓρ (g1 + g2, u) =
∑

k∈”g∪h”
(λk + µk) [ρ(k)(u)] by definition of g1 + g2

=
∑

g

λg [ρ(g)(u)] +
∑

h

µh [ρ(h)(u)] in V

ℓρ (g1 + g2, u) = ℓρ (g1, u) + ℓρ (g2, u)

ℓρ (g1, ℓρ (g2, u)) = ℓρ

(
g1,
∑

h

µh [ρ(h)(u)]
)

=
∑

g

λg

[
ρ (g)

(∑
h

µh [ρ(h)(u)]
)]

=
∑

g

λg

[∑
h

µh [ρ(g)(ρ(h)(u))]
]

for ρ(g) is k-linear

=
∑

g

λg

[∑
h

µh [ρ(gh)(u)]
]

for ρ is a homomorphism

=
∑

k

∑
gh=k

λgµh

 [ρ(k)(u)] in V

ℓρ (g1, ℓρ (g2, u)) = ℓρ (g1g2, u)

=⇒ τG is therefore a well-defined morphism in Sets.
τG is indeed an isomorphism in Sets. Consider the following map:

σG : ModMulL(k[G], V )→ Hom (G, Aut(V ))
ℓ : k[G]× V → V 7→ ρℓ : G→ Aut(V )

g 7→ ρℓ(g) := ℓ(g, •) : V → V

v 7→ ℓ(g, v)

This is a well-defined closed map because for any ℓ ∈ ModMulL(k[G], V ), ρℓ has values in Aut(V )
(ρℓ(g) has ρℓ(g−1) as a two-sided inverse and is therefore an automorphism on V ) and is a morphism
of groups: indeed let g, h ∈ G, let v ∈ V :

[ρℓ(gh)] (v) = ℓ(gh, v) with gh = g × h in k[G]

= ℓ(g, ℓ(h, v)) because ℓ is compatible with × in k[G]

= [ρℓ(g)] ([ρℓ(h)] (v))

[ρℓ(gh)] (v) = [ρℓ(g) ◦ ρℓ(h)] (v)

i.e. ρℓ(gh) = ρℓ(g) ◦ ρℓ(h) so ρℓ is indeed a morphism of groups.
σG is thus a morphism in Sets. Let us show that it is a two-sided inverse of τG.
• Let ρ : G→ Aut(V ) be a representation of G in V . We have (σG ◦ τG)(ρ) = σG(ℓρ) = ρℓρ .

Show that ρℓρ = ρ. Let g ∈ G and v ∈ V :

[
ρℓρ

(g)
]

(v) = [ℓρ(g, •)] (v) by definition of ℓρℓ
in σG

= ℓρ(g, v) by definition of ℓρ(g, •) in σG[
ρℓρ

(g)
]

(v) = [ρ(g)] (v) by definition of ℓρ in τG

Therefore σG ◦ τG = idHom(G,Aut(V )).
• Let ℓ ∈ ModMulL(k[G], V ). We have (τG ◦ σG)(ℓ) = τG(ρℓ) = ℓρℓ

. Let us show that ℓρℓ
= ℓ.
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Let g =
∑

g λg.g ∈ k[G] and v ∈ V :

ℓρℓ
(g, v) =

∑
g

λg [ρℓ(g)(v)] by definition of ℓρℓ
in τG

=
∑

g

λg [ℓ(g, •)(v)] by definition of ρℓ in σG

=
∑

g

λg [ℓ(g, v)] by definition of ℓ(g, •) in σG

= ℓ

(∑
g

λg.1G, ℓ(g, v)
)

because λv = ℓ(λ.1G, v) in V

= ℓ

(∑
g

λg.g, v

)
because ℓ satisfies axioms of left k[G]-modules

ℓρℓ
(g, v) = ℓ(g, v)

Hence, τG ◦ σG = idModMulL(k[G],V ).

=⇒ τG and σG are isomorphisms in Sets.

Let G not be a fixed group anymore. We now proceed to show that τG is natural in the group G.

Consider the following two contravariant functors:

S : Groups → Sets
G 7→ Hom (G, Aut(V ))

f : G→ G′ 7→ f∗ : Hom (G′, Aut(V ))→ Hom (G, Aut(V ))
ρ′ 7→ f∗(ρ′) := ρ′ ◦ f

T : Groups → Sets
G 7→ ModMulL(k[G], V )

f : G→ G′ 7→ f : ModMulL(k[G′], V )→ ModMulL(k[G], V )
ℓ′ 7→ f(ℓ′)

where:
f(ℓ′) : k[G]× V → V(

g =
∑

g λg.g, v
)
7→
[
f(ℓ′)

]
(g, v) := ℓ′

(∑
g λg.f(g), v

)
Those are indeed contravariant functors:

• S being a really basic Hom contravariant functor, there is nothing to prove, apart from the
(almost trivial) closure/well-definedness of f∗, since both f and ρ′ are homomorphisms of groups
(f because in Groups, ρ′ because it is a representation of a group)

• For T , we must prove three things :

1. f(ℓ′) is indeed in ModMulL(k[G], V )

2. Identities are preserved by T (straightforward)

3. Composition is reversed, i.e. if G
f→ G′ f ′

→ G′′, then f ′ ◦ f = f ◦ f ′

1. Let f : G→ G′ be a homomorphism of groups and ℓ′ be an external law of composition on V

over k[G′] satisfying the axioms of the k[G′]-modules. By construction (see definition of T ), it is
clear that f(ℓ′) is a well-defined external law of composition on V over k[G]. Let us show that it
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satisfies the required axioms. Let u, v ∈ V , g1 =
∑

g λg.g ∈ k[G] and g2 =
∑

h µh.h ∈ k[G]:

[
f(ℓ′)

]
(g1, u + v) = ℓ′

(∑
g

λg.f(g), u + v

)

= ℓ′

(∑
g

λg.f(g), u

)
+ ℓ′

(∑
g

λg.f(g), u

)
for ℓ′ is right-additive

[
f(ℓ′)

]
(g1, u + v) =

[
f(ℓ′)

]
(g1, u) +

[
f(ℓ′)

]
(g1, v)

[
f(ℓ′)

]
(g1 + g2, u) = ℓ′

 ∑
k∈”g∪h”

(λk + µk).f(k), u


= ℓ′

(∑
g

λg.f(g) +
∑

h

µh.f(h), u

)
by distributivity

= ℓ′

(∑
g

λg.f(g), u

)
+ ℓ′

(∑
h

µh.f(h), u

)
for ℓ′ is left-additive

[
f(ℓ′)

]
(g1 + g2, u) =

[
f(ℓ′)

]
(g1, u) +

[
f(ℓ′)

]
(g2, u)

[
f(ℓ′)

] (
g1,
[
f(ℓ′)

]
(g2, u)

)
=
[
f(ℓ′)

](
g1, ℓ′

(∑
h

µh.f(h), u

))

= ℓ′

(∑
g

λg.f(g), ℓ′

(∑
h

µh.f(h), u

))

= ℓ′

((∑
g

λg.f(g)
)(∑

h

µh.f(h)
)

, u

)
for ℓ′ is compatible

= ℓ′

∑
k

∑
gh=k

(λgµh).f(g)f(h), u


= ℓ′

∑
k

∑
gh=k

λgµh

 .f(k), u

 for f is a morphism

[
f(ℓ′)

] (
g1,
[
f(ℓ′)

]
(g2, u)

)
=
[
f(ℓ′)

]
(g1g2, u)

Hence, f(ℓ′) satisfy the axioms making V a k[G]-module.

2. The identities are preserved i.e. for idG : G→ G, idG = idModMulL(k[G],V ). This is completely
straightforward with the definition of f (see definition of T ).

3. Let G
f→ G′ f ′

→ G′′ be homomorphisms of groups. Let ℓ′′ ∈ ModMulL(k[G′′], V ).
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Let g =
∑

g λg.g ∈ k[G] and v ∈ V , then:

[(
f ◦ f ′

)
(ℓ′′)

]
(g, v) =

[
f
(
f ′(ℓ′′)

)]
(g, v)

=
[
f(ℓ′)

]
(g, v) by letting ℓ′ := f ′(ℓ′′)

= ℓ′

(∑
g

λg.f(g), v

)
by definition of f(ℓ′)

=
[
f ′(ℓ′′)

](∑
g

λg.f(g), v

)
substituting back

= ℓ′′

(∑
g

λg.f ′(f(g)), v

)
by definition of f ′(ℓ′′)

= ℓ′′

(∑
g

λg.(f ′ ◦ f)(g), v

)
[(

f ◦ f ′
)

(ℓ′′)
]

(g, v) =
[
(f ′ ◦ f)(ℓ′′)

]
(g, v)

Thus, composition is reversed by T .
=⇒ S and T are contravariant functors from Groups to Sets.
Let us finally show that τG is natural in G, i.e. let us prove the commutativity of:

Hom(G, Aut(V )) Hom(G′, Aut(V ))

G G′

ModMulL(k[G], V ) ModMulL(k[G′], V )

τG

f∗

τG′f

S

T

S

T

S

T

f

Let ρ′ : G′ → Aut(V ) be a morphism of groups. Let g =
∑

g λg.g ∈ k[G] and v ∈ V :

[(τG ◦ f∗) (ρ′)] (g, v) = [τG (ρ′ ◦ f)] (g, v) by definition of f∗

= ℓρ′◦f (g, v) by definition of τG

[(τG ◦ f∗) (ρ′)] (g, v) =
∑

g

λg [(ρ′ ◦ f)(g)(v)] by definition of ℓρ′◦f

[(
f ◦ τG′

)
(ρ′)
]

(g, v) =
[
f (ℓρ′)

]
(g, v) by definition of τG′

= ℓρ′

(∑
g

λg.f(g), v

)
by definition of f (ℓρ′)

=
∑

g

λg [(ρ′(f(g)))(v)] by definition of ℓρ′

[(
f ◦ τG′

)
(ρ′)
]

(g, v) =
∑

g

λg [(ρ′ ◦ f)(g)(v)]

=⇒ τ = (τG)G∈Groups is a natural equivalence between S and T in Sets.
This is a rather naive approach to the problem. However, it does bring up the fact that there

exists a natural isomorphism between notions related to this. Indeed, there is an adjunction of
functors between the group-algebra construction:

K[−] : Groups→ K-Alg
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and the group of units for an algebra:

(−)× : K-Alg→ Groups.

This is indeed almost equivalent to what the previous proof shows because we have essentially
proven that there is an natural equivalence between:

HomGroups (G, Aut(V ))

and:
Homk−Alg (k[G], End(V )) .

Let us continue with another example of a natural equivalence in categories related to modules.
Consider the category ModR

∗:
• whose objects are non-empty families (Bi)i∈I of left R-modules and
• whose morphisms σ between two non-empty families (Bi)i∈I and (Cj)j∈J of left R-modules

consist of a function σ : I → J and a family
(

σi,σ(i) : Bi → Cσ(i)

)
i∈I

of left R-maps and

• whose composition between σ : I → J and σ′ : J → I ′ is defined as σ′′ := σ′ ◦ σ.
Let R be a ring and B be a left R-module.
Consider the contravariant functor SB : ModR

∗ → ModZ(R) such that:
• an object (Ai)i∈I is mapped to the left Z(R)-module Hom

(⊕
i∈I Ai, B

)
• a morphism σ : (Ai)i∈I → (Dj)j∈J is mapped to the morphism σ∗ : Hom

(⊕
j∈J Dj , B

)
→ Hom

(⊕
i∈I Ai, B

)
defined such that if f :

⊕
j∈J Dj → B is a left R-map then:

σ∗(f) :
⊕

i∈I Ai → B

(ai)i∈I 7→ f

((∑
i∈σ−1(j) σi,j(ai)

)
j∈J

)

Consider now the contravariant functor TB : ModR
∗ → ModZ(R) such that:

• an object (Ai)i∈I is mapped to the left Z(R)-module
∏

i∈I Hom (Ai, B)
• a morphism σ : (Ai)i∈I → (Dj)j∈J is mapped to the morphism σ :

∏
j∈J Hom (Dj , B)→

∏
i∈I Hom (Ai, B)

such that if
(

fj : Dj → B
)

j∈J
is a family of left R-maps then we associate to it the family(

gi : Ai → B
)

i∈I
such that for any i ∈ I, we have:

gi : Ai → B

ai 7→ gi(ai) := (fσ(i) ◦ σi,σ(i))(ai)

Example 2.1.3.4

Let R be a ring.
Consider τ = (τa)a∈ Mod

R
∗ the family of morphisms in ModZ(R) such that:

∀a = (Ai)i∈I ∈ ModR
∗, τa : Hom

(⊕
i∈I Ai, B

)
→
∏

i∈I Hom (Ai, B)

f 7→ (fαi)i∈I

where αi : Ai →
⊕

i′∈I Ai′ is the usual injection and fαi := f ◦ αi.s
Then, τ is a natural equivalence between SB and TB , i.e.
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Hom
(⊕

i∈I Ai, B
)

Hom
(⊕

j∈J Dj , B
)

a = (Ai)i∈I d = (Dj)j∈J

∏
i∈I Hom(Ai, B)

∏
j∈J Hom(Dj , B)

τa

σ∗

τd
σ

TB

SB
SB

TB

SB

TB

σ

Proof. First prove that for any a = (Ai)i∈I ∈ ModR
∗, τa is a Z(R)-isomorphism.

For any f, g ∈ Hom
(⊕

i∈I Ai, B
)

and r ∈ Z(R) we have:

τa(f + rg) = ((f + rg)αi)i∈I

= ((fαi) + ((rg)αi))i∈I by distributivity of composition over addition

= ((fαi) + r(gαi))i∈I by homogeneity

= (fαi)i∈I + r (gαi)i∈I by definition in the product of Z(R)-modules

τa(f + rg) = τa(f) + rτa(g)

Hence, τa is a left Z(R)-map.
Let (fi)i∈I ∈

∏
i∈I Hom (Ai, B). Define the map:

f :
⊕

i∈I Ai → B

(ai)i∈I 7→
∑

i∈I fi(ai)

It is well defined because the family (ai)i∈I is of finite support and fi(0) = 0. It is evidently a left
R-map for fi are left R-maps. It is trivial to notice that for any i ∈ I, f ◦ αi = fi. Therefore, τa is
surjective.

Take f, g ∈ Hom
(⊕

i∈I Ai, B
)
. Assume that for any i ∈ I, we have fαi = gαi. This means f

and g agree on every element of the form a(i0) := (ai)i∈I where ai = 0,∀i ∈ I \ {i0}, for any i0 ∈ I.
Since every element of

⊕
i∈I Ai is a finite sum of such elements, then because f and g are left

R-maps, it follows that f and g agree on all elements of
⊕

i∈I Ai, i.e. f = g. So τa is injective.
Let us now proceed to show that τ is natural. Let a = (Ai)i∈I and d = (Dj)j∈J in ModR

∗.
Let σ : a→ d be a morphism, i.e. we have σ : I → J and a family

(
σi,σ(i) : Ai → Dσ(i)

)
i∈I

of left
R-maps. Show that the diagram commutes.

Let f :
⊕

j∈J Dj → B be a left R-map. The goal is to show that for any i ∈ I:

((τa ◦ σ∗)(f))i = ((σ ◦ τd)(f))i

We will denote:

• for any i ∈ I, pi :
⊕

i′∈I Ai′ → Ai the usual projection.

• for any j ∈ J , qj :
⊕

j′∈J Dj′ → Dj the usual projection.

• for any i ∈ I, αi : Ai →
⊕

i′∈I Ai′ the usual injection.

• for any j ∈ J , βj : Dj →
⊕

j′∈J Dj′ the usual injection.

Let i ∈ I.
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• Counterclockwise, we have:

((τa ◦ σ∗)(f))i = (τa [σ∗(f)])i

=
(
τa
[
f ◦ βσ(i) ◦ σi,σ(i) ◦ pi

])
i

= f ◦ βσ(i) ◦ σi,σ(i) ◦ pi ◦ αi

((τa ◦ σ∗)(f))i = f ◦ βσ(i) ◦ σi,σ(i)

• Clockwise, we get:

((σ ◦ τd)(f))i = (σ [τd(f)])i

=
(

σ
[
(f ◦ βj)j∈J

])
i

((σ ◦ τd)(f))i = f ◦ βσ(i) ◦ σi,σ(i)

This concludes the proof that τ is a natural equivalence between SB and TB .

Similarly, we give the following example of a natural equivalence whose proof is similar to the
previous.

Let A be a left R-module.
Consider the functor SA : ModR

∗ → ModZ(R) such that:
• an object (Bi)i∈I is mapped to the left Z(R)-module Hom

(
A,
∏

i∈I Bi

)
• a morphism σ : (Bi)i∈I → (Cj)j∈J is mapped to the morphism σ∗ : Hom

(
A,
∏

i∈I Bi

)
→ Hom

(
A,
∏

j∈J Cj

)
defined such that if f : A→

∏
i∈I Bi is a left R-map then:

σ∗(f) : A→
∏

j∈J Cj

a 7→
(∑

i∈σ−1(j)(σi,jpif)(a)
)

j∈J

Consider now the functor TA : ModR
∗ → ModZ(R) such that:

• an object (Bi)i∈I is mapped to the left Z(R)-module
∏

i∈I Hom (A, Bi)
• a morphism σ : (Bi)i∈I → (Cj)j∈J is mapped to the morphism σ̃ :

∏
i∈I Hom (A, Bi)→

∏
j∈J Hom (A, Cj)

defined such that if
(

fi : A→ Bi

)
i∈I

is a family of left R-maps then we associate to it the family(
gj : A→ Cj

)
j∈J

such that for any j ∈ J we have:

gj : A→ Cj

a 7→ gj(a) :=
∑

i∈σ−1(j)(σi,jfi)(a)

Example 2.1.3.5

Let R be a ring.
Consider τ = (τb)b∈ Mod

R
∗ the family of morphisms in ModZ(R) such that:

∀b = (Bi)i∈I ∈ ModR
∗, τb : Hom

(
A,
∏

i∈I Bi

)
→
∏

i∈I Hom (A, Bi)

f 7→ (pif)i∈I

where pi :
∏

i′∈I Ai′ → Ai is the usual projection.
Then, τ is a natural equivalence between SA and TA, i.e.
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Hom
(
A,
∏

i∈I Bi

)
Hom

(
A,
∏

j∈J Cj

)

b = (Bi)i∈I c = (Cj)j∈J

∏
i∈I Hom(A, Bi)

∏
j∈J Hom(A, Cj)

σ∗

τb τc
σ

TA

SA
SA

TA

SA

TA

σ̃

These two examples establish the equivalence between:

• Giving a map from a direct sum is like giving a family of maps from each summand of the
direct sum.

• Giving a map to a direct product is like giving a family of maps to each factor of the direct
product.

2.2 Abelian categories

2.2.1 Pre-additive and additive categories

Definition 2.2.1.1 : Pre-additive category

A category C is called preadditive if, for every A, B ∈ C the hom-set HomC (A, B) has a
structure of (additive) abelian group such that composition is bilinear:

∀A, B, C ∈ C, ∀f, g ∈ HomC (A, B) , ∀h, k ∈ HomC (B, C) ,

h ◦ (f + g) = h ◦ f + h ◦ g ∧ (h + k) ◦ f = h ◦ f + k ◦ f.

Example 2.2.1.2

If R is a ring, then the category ModR of left R-modules is pre-additive. Indeed, according
to Proposition 1.1.2.12, the hom-sets HomR (A, B) are equipped with a structure of ablelian
groups. One can routinely verify that composition is then bilinear.

Definition 2.2.1.3 : Additive functor

Let C and D be two pre-additive categories.
A functor T : C → D is said to be additive if the maps HomC (A, B)→ HomD (T (A), T (B))
are actually group-homomorphisms with respect to the additive abelian group structure on
the hom-sets.

Example 2.2.1.4

If R is any ring, then the tensor products functors on the category of R-modules and the
Hom functors on that same category are additive.

Proposition 2.2.1.5

Let C be a pre-additive category.
Any finite product in C is also a finite coproduct. We call them biproducts.
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Definition 2.2.1.6 : Initial object

Let C be a category.
An object I ∈ C is said to be initial if for every object A ∈ C there exists a unique morphism
from I to A. All initial objects are therefore isomorphic.

Definition 2.2.1.7 : Terminal object

Let C be a category.
An object T ∈ C is said to be terminal if for every object A ∈ C there exists a unique
morphism from A to T . All terminal objects are therefore isomorphic.

Definition 2.2.1.8 : Zero object

Let C be a category.
An object Z ∈ C is called a zero object if it is both initial and terminal. Then, between every
two objects A and B in C there exists a morphism called the zero morphism A→ Z → B.

Definition 2.2.1.9 : Additive category

A category C is said to be additive if it is pre-additive, it has a zero object and every finite
biproduct exist.

Example 2.2.1.10

If R is a ring, the categories ModR and ModR are additive. Their zero object is the trivial
module (Example 1.1.1.14) and their finite biproduct is the finite direct sum (which coincides
with the finite direct product).

Proposition 2.2.1.11

Let C and D be additive categories. Let T : C → D be a functor.
Then: T is additive if, and only if, T preserves all biproduct diagrams (i.e. biproducts are
sent on biproducts and injections/projections are sent to injections/projections).

2.2.2 Pre-abelian and abelian categories

Definition 2.2.2.1 : Equaliser

Let C be a category. Let X, Y ∈ C and f, g ∈ HomC (X, Y ).
The equaliser of f and g consists of an object E ∈ C and a morphism eq ∈ HomC (E, X)
such that:

• f ◦ eq = g ◦ eq,

• for any object O ∈ C and morphism m ∈ HomC (O, X) with f ◦m = g ◦m there exists
a unique morphism u ∈ HomC (O, E) such that m = eq ◦ u.

E X Y

O

eq f

g

u m

The dual definition is called coequaliser.
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Definition 2.2.2.2 : Kernel, Cokernel

Let C be a category with a zero object. Let X, Y ∈ C and f ∈ HomC (X, Y ).
The kernel (resp. cokernel) of f is the equaliser (resp. coequaliser) between f and the zero
morphism between X and Y .

Definition 2.2.2.3 : Pre-abelian category

A category C is called pre-abelian if it is additive and the kernel, as well as the cokernel, of
every morphism in C exist in C.

Example 2.2.2.4

If R is any ring, the categories ModR and ModR are pre-abelian. The kernel (resp. cokernel)
of f is given by ker(f) (resp. coker(f)) (Definition 1.1.2.3) together with the canonical
injection from ker(f) (resp. the canonical projection onto coker(f)).

Definition 2.2.2.5 : Left- and right-exact functors

Let C and D be pre-abelian categories.
A functor T : C → D is called left-exact (resp. right-exact) if it is additive and it preserves
all kernels (resp. all cokernels).

Example 2.2.2.6

Let us place ourselves once again in the category of R-modules where R is a ring. Then the
covariant and contravariant Hom functor are left-exact and the tensor product functors are
right-exact.

Definition 2.2.2.7 : Monomorphism and epimomorphism

Let C be a category.
A morphism f ∈ HomC (B, C) is called a monomorphism (resp. epimorphism) if it is
left-cancellable (resp. right-cancellable) that is to say, for any g1, g2 ∈ HomC (A, B)
(resp. h1, h2 ∈ HomC (C, D)) we have:

f ◦ g1 = f ◦ g2 ⇒ g1 = g2,

h1 ◦ f = h2 ◦ f ⇒ h1 = h2.

Definition 2.2.2.8 : Abelian category

A category C is said to be abelian if it is pre-abelian and every monomorphism is a kernel of
some morphism and every epimorphism is a cokernel of some morphism.

Example 2.2.2.9

For any ring R, the categories ModR and ModR are abelian. The monomorphisms (resp.
epimorphisms) are exactly the R-linear maps that are injective (resp. surjective).



Chapter 3

Elements of homological algebra

Homology theory originated from the field of algebraic topology at the end of the xix’th century. It
was in particular used to study the concept of “holes” inside topological spaces. The area extended
as time went on. Practices first seen in algebraic topology make appearances in algebra. A few
different homology theories in algebra arose during the first half of the xx’th century: namely, the
cohomology of groups, the cohomology of associative algebras and the cohomology of Lie algebras.
To unify those theories, Cartan and Eilenberg introduced the concept of projective modules
together with the use of derived functors in their 1956 book [CE56], named Homological Algebra
that marks the birth of the discipline of the same name.

For a complete account on the history of homological algebra, see [Wei99].
The standard references for studying homological algebra are [Rot09, HS97, Wei94, ML95].

3.1 Modern homological algebra

3.1.1 Chain complexes

Definition 3.1.1.1 : Chain complex

Let A be an abelian category.
A chain complex (C·, d·) in A is any family indexed by Z of morphisms called differentials:

· · · → Cn+1
dn+1→ Cn

dn→ Cn−1 → · · ·

such that for any n ∈ Z we have dndn+1 = 0 (the zero morphism).

Remark 3.1.1.2

In the abelian category A = ModR where R is a ring, saying that dndn+1 = 0 is equivalent
to saying that im(dn+1) ⊆ ker(dn). Hence, it follows that exact sequences (Definition 1.1.3.1)
are chain complexes.

Proposition 3.1.1.3

Let A and A′ be abelian categories. Let F : A → A′ be an additive functor.
If (C·, d·) is a chain complex in C, then (FC·, Fd·) := (FCn, Fdn)n∈Z is a chain complex
in A′.

51
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Definition 3.1.1.4 : Homology of a complex

Let A be an abelian category. Let C := (C·, d·) be a chain complex in A.
For every n ∈ Z, define the set of n-chains as Cn, the set of n-cycles as Zn(C) := ker(dn)
and the set of n-boundaries as Bn(C) := im(dn+1).
The n’th homology of C if defined as:

Hn(C) := Zn(C)/Bn(C).

3.1.2 Chain maps

Definition 3.1.2.1 : Chain map

Let A be an abelian category. Let (C·, d·) and (C ′
· , d′

·) be chain complexes in A.
A chain map f between (C·, d·) and (C ′

· , d′
·) is any sequence of morphisms

(
fn : Cn → C ′

n

)
n∈Z

in A such that for all n ∈ Z, we have d′
n ◦ fn = fn−1 ◦ dn.

· · · Cn+1 Cn Cn−1 · · ·

· · · C ′
n+1 C ′

n C ′
n−1 · · ·

fn+1

dn+1

fn

dn

fn−1

d′
n+1 d′

n

Remark 3.1.2.2

Chain maps can be composed in an obvious way, namely, a chain map f from (C·, d·)
to (C ′

· , d′
·) and a chain map g from (C ′

· , d′
·) to (C ′′

· , d′
·) define:

g ◦ f := (gn ◦ fn)n∈Z .

It actually follows that, for any abelian category, the chain complexes in A together with
chain maps between them and their composition form a category, denoted Comp(A).

Proposition 3.1.2.3

If A is an abelian category, then Comp(A) is an abelian category.

Proof. See [Rot09, Proposition 5.100].

Proposition 3.1.2.4

If A is an abelian category, then we can define an induced map from chain maps in such a
way that Hn : Comp(A)→ A is an additive functor for each n ∈ Z.

Proof. See [Rot09, Proposition 6.8].
The functor’s action on morphisms is defined as follows:

Hn(f) : Hn(C)→ Hn(C′)
cls(zn) 7→ cls(fnzn)

.
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3.1.3 Homotopy

Definition 3.1.3.1 : Homotopy between chain maps

Let A be an abelian category. Let (C·, d·) and (C ′
· , d′

·) be chain complexes in A.
Two chains maps f, g : (C·, d·)→ (C ′

· , d′
·) are said to be homotopic if for all n ∈ Z there

exists a morphism sn : Cn → C ′
n+1 such that:

fn − gn = d′
n+1sn + sn−1dn.

In which case, we write f ≃ g. We say that f is null-homotopic if f ≃ 0 where 0 is the zero
morphism.

Theorem 3.1.3.2

Let A be an abelian category. Let C := (C·, d·) and C′ := (C ′
· , d′

·) be chain complexes in A.
Let f and g be chain maps between (C·, d·) and (C ′

· , d′
·).

If f ≃ g, then for all n ∈ Z the induced maps Hn(f) and Hn(g) are equal.

Proof. Let z ∈ Zn be an n-cycle. Hence, we have by homotopy:

fnz − gnz = d′
n+1snz + sn−1dnz = d′

n+1snz

since by definition of z, we have dnz = 0.
It follows that fnz − gnz ∈ Bn(C′) from which we deduce Hn(f) = Hn(g).

Definition 3.1.3.3 : Contracting homotopy

Let A be an abelian category.
A chain complex C = (C·, d·) in A is said to have a contracting homotopy if the identity
morphism 1C is null-homotopic.
In other words, for every n ∈ Z there exists a morphism sn : Cn → Cn+1 such that:

dn+1sn + sn−1dn = 1Cn
.

Proposition 3.1.3.4

Let A be an abelian category. Let C be a chain complex in A.
If C has a contracting homotopy, then it is acyclic, that is to say:

∀n ∈ Z, Hn(C) = 0.
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3.1.4 Resolutions

The notions of projective and injective modules extend to any abelian category.

Definition 3.1.4.1 : Projective and injective objects

Let A be an abelian category.
An object P is projective if for every epimorphism p : A→ B and any morphism f : P → B

there exists a morphism g : P → A such that f = p ◦ g.

P

A B

f
g

p

The dual definition by reversing arrows and considering monomorphisms instead of epimor-
phisms yield the notion of injective object.

Definition 3.1.4.2 : Projective resolution

Let A be an abelian category. Let A ∈ A be an object.
A projective resolution of A in the category A is an exact sequence:

P := · · · → P2
d2→ P1

d1→ P0
ε→ A→ 0

where each Pn is projective in A.

Definition 3.1.4.3 : Deleted projective resolution

Let A be an abelian category. Let A ∈ A.
A deleted projective resolution of a projective resolution P of A is the complex:

PA := · · · → P2
d2→ P1

d1→ P0 → 0.

Giving a projective resolution is equivalent to giving a deleted projective resolution since we can
recover A by computing coker(d1).

Proposition 3.1.4.4

Let A be an abelian category.
If A has enough projectives (∀A ∈ A, there exists a projective P and an epimorphism from P

to A), then every object in A has a projective resolution.

Proof. See [Rot09, Corollary 6.3].

Remark 3.1.4.5

In the category ModR where R is a ring, the projectives are the projective modules
(Definition 1.1.7.4) and the category “has enough projectives”. Free modules are projective
modules. For any left R-module M , we can actually construct a free resolution of M , by an
iterative process on taking presentations on free modules.
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Definition 3.1.4.6 : Injective resolution

Let A be an abelian category. Let A ∈ A be an object.
An injective resolution of A in the category A is an exact sequence:

E := 0→ A
η→ E0 d0

→ E1 d1

→ E2 → · · ·

where each En is injective in A.

Definition 3.1.4.7 : Deleted injective resolution

Let A be an abelian category. Let A ∈ A.
A deleted injective resolution of an injective resolution E of A is the complex:

EA := 0→ E0 d0

→ E1 d1

→ E2 → · · · .

Once again, having a deleted injective resolution instead of its injective resolution does not lose
information since we can recover A by computing ker(d0).

The dual statement of Proposition 3.1.4.4 is also true, i.e. every object has an injective resolution
when the abelian category has enough injectives. For instance, the category ModR for any ring R

has enough injectives.

3.2 Derived functors

3.2.1 Left-derived functors and Tor

Theorem 3.2.1.1 : (Comparison theorem)

Let A be an abelian category. Let f : A→ A′ be a morphism in A.
Consider the diagram:

· · · P2 P1 P0 A 0

· · · P ′
2 P ′

1 P ′
0 A 0

f̂2

d2

f̂1

d1

f̂0

ε

f

d′
2 d′

1 ε′

where the rows are chain complexes.
If the Pi in the top row are projective and if the bottom row is exact, then there exists a
chain map f̂ between the chain complexes after removing A and A′ such that the diagram
commutes and such that f ◦ ε = ε′ ◦ f0. Moreover, any two such chain maps are homotopic.

Let us define the notion of left-derived functors.
Let T : A → C be a covariant functor between abelian categories. We assume that A has enough

projectives.
For now, for every object A ∈ A, fix a projective resolution P. Define:

∀n ∈ Z, (LnT )A := Hn(TPA)

where PA is the deleted projective resolution associated with the fixed projective resolution P for A.
Now, for a morphism f : A→ A′ in A, define:

∀n ∈ Z, (LnT )f := Hn(T f̂)
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where f̂ : PA → P′
A′ is a chain map obtained from the Comparison theorem (Theorem 3.2.1.1) for

f with PA (resp. P′
A′) the deleted projective resolution associated to the fixed projective resolution

for A (resp. for A′).
Explicitly, we have (LnT )f : z + im(Tdn+1) 7→ (T f̂n)z + im(Td′

n+1).

Theorem 3.2.1.2 : (Left-derived functors)

Let A and C two abelian categories. Let T : A → C be an additive covariant functor.
If A has enough projectives, then, for every n ∈ Z, (Ln)T : A → C is an additive covariant
functor. The family (LnT )n∈Z is called the family of left-derived functors of T .

Proof. The well-definedness of the functor on morphism follows from the Comparison theorem,
since it states that the chain map f̂ we picked is unique up to homotopy, and therefore taking
another one yields the same induced map once we take the map through the homology functor.
The rest just follows from the fact that Hn is an additive covariant functor.

Proposition 3.2.1.3

Let A and C be abelian categories. Let T : A → C be an additive covariant functor.
Suppose A has enough projectives. Construct a new family of left-derived functors (L̃nT ) of
T by fixing a new projective resolution for every object A ∈ A.
Then, for every n ∈ Z, the functors LnT and L̃nT are naturally isomorphic.
In particular, for all object A ∈ A, the objects (LnT )A are independent of the choice of
projective resolution for A.

Proof. See [Rot09, Proposition 6.20].

Let us now introduce the main left-derived functors in the category ModR .

Definition 3.2.1.4 : Tor functors

Let R be a ring. Let A be a right R-module.
The left-derived functors of the additive covariant functor A⊗R − are denoted TorR

n (A,−),
and called Tor functors.
Similarly, if B is a left R-module, the left-derived functors of the additive covariant func-
tor −⊗R B are denoted TorR

n (−, B).

The notation is the same for the two functors because, according to [Rot09, Theorem 6.32], the
abelian groups constructed from TorR

n (A,−) and TorR
n (−, B) respectively applied to B and A are

isomorphic, for any n ∈ Z.

3.2.2 Right-derived functors and Ext

There is an analogous procedure to construct right-derived functors of a covariant additive
functor: instead of projective resolutions, one has to fix injective resolutions, then take homology
of the deleted injective resolution through the functor and finally, since the dual statement of the
Comparison theorem (Theorem 3.2.1.1) is also true, define the right-derived functors on morphisms
by using the chain map whose existence is asserted in the dual of the Comparison theorem.

The right-derived functors of a covariant additive functor T are denoted by RnT .
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Definition 3.2.2.1 : Covariant Ext functors

Let R be a ring. Let A be a left R-module.
The right-derived functors of the additive covariant Hom functor HomR (A,−) are de-
noted Extn

R (A,−) and called Ext functors.

Now, let us take interest in the right-derived functors of an additive contravariant functor T . By
contravariance, a positive chain complex (i.e. a chain complex (C·, d·) for which for every n < 0,
we have Cn = 0) is sent through T to a negative chain complex (for all n > 0, Cn = 0). Hence, one
needs to start from a projective resolution of A that will later be sent to a negative chain complex
through T .

Here is now how we define the right-derived functors of the additive contravariant functor T :
• For every object A ∈ A, fix a projective resolution of A.
• Then define, for every object A ∈ A:

(RnT )A := Hn(TPA)

where PA is the deleted projective resolution associated to the projective resolution fixed for A

and Hn(−) is the homology functor on negative chain complexes.
• Finally, for every morphism f : A→ A′ in A define:

(RnT )f := Hn(T f̂)

where f̂ is a chain map (unique up to homotopy) that satisfies the condition of the Comparison
theorem (Theorem 3.2.1.1) between the deleted projective resolutions associated with the projective
resolutions fixed for A and A′.

The proof of independence of the choice of projective resolutions for the aforementioned right-
derived functors can be found in [Rot09, Proposition 6.56].

Definition 3.2.2.2 : Contravariant Ext functors

Let R be a ring. Let B be a left R-module.
The right-derived functors of the additive contravariant Hom functor HomR (−, B) are
denoted Extn

R (−, B) and are also called Ext functors.

It is indeed again a result [Rot09, Theorem 6.67] that the abelian groups formed by the func-
tors Extn

R (−, B) and Extn
R (A,−) applied respectively to A and B are isomorphic.
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Chapter 4

Anick resolution and Koszul
complex

4.1 Anick resolution

When it comes to the homology of associative algebras, one is concerned about the ability of
constructing projective or free resolutions that enables the computation of homological invariants
such as the TorA

n (K,K) groups where K is a field and A an augmented K-algebra. Indeed
classification theorems of algebraic structures, for instance, can be enunciated through the lens of
such invariants. One such resolution always exists: it is called the bar resolution (see [EM53, ML95]).
However, it is usually too big of a resolution to be used in practice. Ideally, one would have a
minimal resolution (see Subsection 4.1.5), but there are no such effective constructions for any
associative algebra in general. An alternative has been proposed for augmented algebras A by
David J. Anick in 1986 [Ani86]: it consists of a free resolution of the ground field in the category
of right A-modules. The n’th module in the resolution is generated by a certain construction
called n-chains (see Subsection 4.1.2), first introduced by Anick in [Ani85] then reformulated
in [Ani86]. The n-chains are built on top of the notion of obstructions. As subsequent resources
on the matter present it (see for instance [Ufn95, DMR99, Chapter 7]), these obstructions can be
understood as the leading monomials of a minimal non-commutative Gröbner basis of the ideal of
relations of a given presentation. We refer the reader to the preprint [ML23] (from which some parts
in this section are taken) where the relation between the original setting and the interpretation in
terms of non-commutative Gröbner bases is explored in details. Efforts towards generalising the
pattern behind the Anick resolution and its connections to non-commutative Gröbner bases theory
have arisen. See for instance the algorithmic approaches in [GS07] and in [DMR99, Chapter 2] to
construct projective resolutions of path algebras using Gröbner bases.

4.1.1 Setting

Let K be a field and A an augmented associative unitary K-algebra (Definition 1.2.1.5). Denote
by ε : A→ K the augmentation map and by η : K→ A the unique section of ε satisfying η(1K) = 1A.

Let ⟨X|R⟩ be a presentation of A (Definition 1.2.3.2) and ≺ be a monomial order on ⟨X⟩
(Definition 1.2.2.5). Denote by I := I(R) the ideal of relations and by O(I) := ⟨X⟩ \LM (I). Notice
how O(I) depends on chosen the monomial order ≺. The elements of the set O(I) are known as
normal words. Recall from Proposition 1.2.4.11 the decomposition as vector spaces:

K ⟨X⟩ = I ⊕KO(I),

59
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where KO(I) is the vector space spanned by the set of normal words. This is equivalent to saying
that K⟨X⟩/I ∼= KO(I). It follows that A and KO(I) are isomorphic as vector spaces. We will denote
by r the image in A of any polynomial r ∈ K ⟨X⟩ through the canonical projection K ⟨X⟩ → K⟨X⟩/I

induced by the presentation ⟨X|R⟩.
We can suppose that R is a non-commutative Gröbner basis of I with respect to ≺ (Defini-

tion 1.2.4.4). Indeed, if it is not, we can construct, for instance using the Buchberger procedure
([Mor94, Section 5.4]), a new presentation ⟨X|G⟩, that gives the same quotient algebra isomorphic
to A, but in which G is a non-commutative Gröbner basis of the ideal of relations with respect to
the monomial order ≺. This is the case because a non-commutative Gröbner basis of the ideal I

(here generated by R) generates that same ideal I.
Moreover, we can assume R to be minimal, or even reduced, as a non-commutative Gröbner basis

since we can apply the procedure of reduction presented in Proposition 1.2.4.10.

Remark 4.1.1.1

Note that the set LM (R) is independent of the choice of the minimal non-commutative
Gröbner basis R according to Proposition 1.2.4.8.

Definition 4.1.1.2 : Obstructions

If R is a minimal non-commutative Gröbner basis of the ideal it generates, then call the
monomials in LM (R) obstructions. With Remark 4.1.1.1 in mind, denote by V := LM (R)
the set of obstructions.

In the literature, obstructions are also sometimes called tips ([Far92, NWW19]).
In terms of rewriting theory over associative algebras [Mal19], the obstructions are exactly the

monomials defining the rewriting rules. Thus, they are exactly the elements from which the critical
branchings [Mal19] arise. We will now define a subset of those critical branchings, called the
n-chains.

4.1.2 n-chains

The concept of n-chains can be defined in several ways:

• the definition in terms of tails as in [Ani85, Mal19, Far92],

• the definition in terms of a graph as in [Ufn95, NWW19],

• the definition in terms of obstructions as in [Ani86].

It has be shown in the preprint [ML23, Proposition 2.6] that the definition in terms of obstructions
and in terms of a graph are equivalent. We will show in Proposition 4.1.2.6 that they are actually
all equivalent by proving that the definition in terms of a graph is also equivalent to the one in
terms of tails.

Different numberings can be found in the literature. The one used originally by Anick starts
from (−1) and can be considered as “counting” the number of obstructions contained within the
chain. The other one starts from 0 and can be viewd as “counting” the number of tails that the
chain contains. It also has the convenient advantage to match the homology degrees once we
concern ourselves with the resolution. We will use the latter one in this thesis.

Let us introduce all of them and show that they are indeed equivalent after giving some examples.
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Definition 4.1.2.1 : n-chains in terms of obstructions

Let w = x1 · · ·xℓ be a word in ⟨X⟩. Let n ⩾ 2.
We say that w is an n-prechain if there exists two (n−1)-tuples (a1, · · ·, an−1) et (b1, · · ·, bn−1)
of integers such that:

1 = a1 < a2 ⩽ b1 < a3 ⩽ b2 < a4 ⩽ b3 < · · · < an−1 ⩽ bn−2 < bn−1 = ℓ

and
∀m ∈ J1 .. n− 1K, xam

xam+1 · · ·xbm−1xbm
∈ V.

An n-prechain is called a n-chain if:

∀m ∈ J1 .. n− 1K, ∀i ∈ J1 .. bm − 1K, x1x2 · · ·xi is not an (m + 1)-prechain.

Denote by CO
n the set of n-chains according to that definition.

In this definition, unlike for the other two, we must fix, by convention, the set of 0-chains to {1}
and the set of 1-chains to X.

Definition 4.1.2.2 : n-chains in terms of a graph

Construct a simple directed graph Q whose nodes are:

Q0 = {1} ∪X ∪ {s ∈ ⟨X⟩ | s is a proper suffix of an obstruction} .

The directed edges are defined as follows:

Q1 = {(1, x) | x ∈ X} ∪
{

(s, t) ∈ (Q0 \ {1})2 ∣∣ st contains only one obstruction and it is a suffix
}

.

For any non-negative integer n ∈ N, we define the set of n-chains by this definition as:

CG
n :=

{
n∏

i=0
wi

∣∣∣∣∣ (1 = w0, w1, · · · , wn) are nodes in a walk with n edges in Q starting at 1
}

.

This graph can be constructed as soon as the set V of obstructions is explicitly known, and we
will show that we can extract some precious information from it.

Notice that the only walk of length 0 starting at 1 is 1 itself. Therefore, CG
0 = {1}. Note also

that the only nodes directly connected to 1 are all the letters of X. Therefore, we have CG
1 = X.

Let us now introduce the last definition in terms of tails:

Definition 4.1.2.3 : n-chains in terms of tails

Define, for n ∈ N, the set CT
n of n-chains and their tails inductively as follows.

• The only 0-chain is the empty word 1 and its tail is itself.

• The 1-chains are the letters in X, and a letter is its own tail.

• Assume the set of n-chains and their tails has been defined. Define an (n + 1)-chain, for
n ⩾ 1, as a word wt such that:

1. w is an n-chain,

2. t is a normal word (i.e. t ∈ O(I)) called the tail of the (n + 1)-chain,

3. t′t, where t′ is the tail of w, contains a unique obstruction (i.e. an element from V ) and
it is a suffix.
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This last definition allows one to decompose uniquely any n-chain c(n) ∈ CT
n as c(n) = t1t2 · · · tn

where the ti’s are the successive tails. We will write c(n) =: [t1, t2, · · ·, tn].

Remark 4.1.2.4

It is worthwhile to notice that the tails being normal words, it means that the obstruction
contained in any t′t (where t′ and t are consecutive tails in a chain) necessarily overlaps
on t′ in addition to being a suffix of t′t.

Let us proceed to give some examples.

Example 4.1.2.5

Consider the alphabet X = {x, y, z}.
Suppose we have the set of obstructions V = {xxx, xxyx, yxz}.
The word xxxx is:

• in CO
3 because we can view it as the overlap of the obstructions xxxx defined through

the tuples (a1, a2) := (1, 2) and (b1, b2) := (3, 4)

• in CG
3 because there is a walk with 3 edges 1 → x → xx → x in the graph given in

Figure 4.1.

• in CT
3 because xxxx = [x, xx, x] satisfying the tails conditions.

On the other hand, xxxxx is:

• not in CO
3 (even though it is a 3-prechain as seen by xxxxx) because xxxx is a

3-prechain smaller and contained in xxxxx. It also not a 4-prechain because it does
not contain 3 obstructions that satisfy the overlapping conditions. Therefore, xxxxx

is not in CO
4 either.

• not in CG
3 because the only walk with two edges that matches the start of the word in

Figure 4.1 is 1→ x→ xx. We would thus need an edge from xx to itself to complete
the walk of three edges giving the word xxxxx which is not the case. Also, one could
hope to get a walk of four edges starting with 1→ x→ xx→ x but once again there
are no looping edge on the node x, and so we cannot get xxxxx. Hence xxxxx is not
in CG

4 either.

• not in CT
3 because the first tail t1 has to be x (first letter of the word), thus the second

tail t2 as to be xx to have an obstruction in t1t2 that also matches the start of the
word. Then, we would have needed to have xx as third tail t3 to complete the word
with 3 tails; however this is impossible because it would violate the condition that
t2t3 = xxxx contains only one obstruction. Similarly, if we try in 4 tails, we could get
t3 = x working, but we would stumble against the impossibility of defining t4 = x

since we would have t3t4 that does not contain an obstruction. Thus, xxxxx is not in
CT

4 either.

In the same manner, one can show that xxxyx = [x, xx, yx] is in CO
3 , CG

3 and CT
3 but xxxxyx,

even though it is 3-prechain, is not a 3-chain by any definition.
An example of a 4-chain for all three definitions is for instance xxyxxyxz = [x, xyx, xyx, z].

Let us now show that the three definitions are indeed equivalent.
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Figure 4.1: n-chains graph for Example 4.1.2.5
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Proposition 4.1.2.6

For all n ∈ N, we have CO
n = CG

n = CT
n .

Proof. It is shown in [ML23, Proposition 2.6] that the definitions in terms of obstructions and in
terms of a graph match, i.e. ∀n ∈ N, CO

n = CG
n . Let us show now that the definition in terms of

tails matches with the one in terms of a graph.
We have already pointed out that CG

0 = {1} = CT
0 and CG

1 = X = CT
1 .

Remains only the induction step. Let n be a certain integer greater than 0 such that CG
n = CT

n

and the tail of an element w associated to the walk 1→ w1 → · · · → wn is wn.
Let w ∈ CG

n+1. It is therefore associated with a walk with (n+1) edges 1→ w1 → · · · → wn → wn+1

such that w = w1 · · ·wn+1. Removing the last node wn+1 we obtain an element in CG
n . By inductive

hypothesis, we thus have w1 · · ·wn ∈ CT
n with wn its tail. First, wn+1 is a normal word because it

is a node in the graph and thus a subword of an obstruction (even if it is a letter, since it is in a
path of length ⩾ 2). Then, since there is an edge between wn and wn+1 there exists exactly one
obstruction wnwn+1, and it is a suffix. Hence, w ∈ CT

n+1.
Let [t1, · · ·, tn, tn+1] ∈ CT

n+1. By inductive hypothesis t1 · · · tn ∈ CG
n , that is to say, there is a

walk 1→ t1 → · · · → tn. Now since tntn+1 contains an obstruction that overlaps on tn, and it is
suffix, it follows that tn+1 is a proper suffix of an obstruction and thus a node in the graph. Moreover,
this also means there is an edge from tn to tn+1 completing the walk 1→ t1 → · · · → tn → tn+1.
Hence, t1 · · · tn+1 ∈ CG

n+1.

Remark 4.1.2.7

With Proposition 4.1.2.6 and [ML23, Proposition 2.6], we can safely drop the superscripts
when writing the sets of n-chains since all three definitions define the same sets. Then, let
us denote by Cn the set of n-chains according to any of Definition 4.1.2.1, Definition 4.1.2.2
or Definition 4.1.2.3. Notice also that the proof of the previous proposition allows us to
interpret the nodes of a walk in the graph as the successive tails of the associated chain.

Remark 4.1.2.8

Notice that no matter what the set of obstructions V is and no matter the alphabet X, we
will always have:

C0 = {1} C1 = X C2 = V
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4.1.3 The resolution

The modules in the Anick resolution are of the form KCn ⊗K A where Cn is the set of n-chains as
defined in Remark 4.1.2.7. Before presenting the resolution, we need to introduce a last ingredient:
the high-term.

Definition 4.1.3.1 : High-term

Let n ∈ N and P :=
∑

i λic
(n)
i ⊗ ri ∈ KCn ⊗K A.

The high-term of P is defined as the following monomial:

LM (P ) := LM
(∑

i

λi

(
c

(n)
i r̂i

))
,

where r̂i is the unique normal form of ri with respect the non-commutative Gröbner basis.

Theorem 4.1.3.2 : (Anick resolution [Ani86, Theorem 1.4])

Let K be a field. Let A be a K-algebra augmented by ε with the section defined by η(1K) = 1A.
Let ⟨X|R⟩ be a presentation of A such that R is a minimal non-commutative Gröbner
basis according to the monomial order ≺. Let I be the two-sided ideal generated by R.
Let O(I) := ⟨X⟩ \LM (I) be the set of normal words. Let V := LM (R) be the set of leading
monomials in R. For any n ∈ N, let Cn denote the set of n-chains on V .
There is a free resolution of K in the category of right A-modules:

· · ·⇄ KCn+1⊗KA
dn+1

⇄
in

KCn⊗KA
dn

⇄
in−1

KCn−1⊗KA ⇄ · · ·⇄ KC1⊗KA
d1
⇄
i0

KC0⊗KA
ε

⇄
η
K→ 0

where for n ⩾ 1, the map of right A-modules dn satisfies:

∀c(n) := [t1, · · ·, tn] ∈ Cn, dn ([t1, · · ·, tn]⊗ 1A) := [t1, · · ·, tn−1]⊗ tn + ωc(n) ,

with either ωc(n) = 0 or its high-term verifies LM (ωc(n)) ≺ c(n).

Proof. The proof can be found in its entirety in [Ani86] or in [ML23] with slightly more details.
Alternative ways of proving the theorem are proposed in [NWW19] and in [Far92].

We shall recall here the definitions of the differentials and of the contracting homotopy:

• ∀x ∈ X, d1(x⊗ 1A) := 1⊗ x− 1⊗ ηε(x).

• ∀y = x1 · · ·xℓ ∈ O(I), i0(1⊗ (y − ηε(y))) :=
∑ℓ

j=1 ε(x1 · · ·xj−1)xj ⊗ xj+1 · · ·xℓ.

• ∀n ∈ N∗,∀c(n+1) = [t1, · · ·, tn, tn+1] ∈ Cn+1

dn+1 ([t1, · · ·, tn, tn+1]⊗ 1A) := [t1, · · ·, tn]⊗ tn+1 − in−1dn

(
[t1, · · ·, tn]⊗ tn+1

)
.

• ∀n ∈ N∗,∀v =
∑

i λic
(n)
i ⊗ si ∈ KCn ⊗K A

in(v) :=

LC (v) c(n+1) ⊗ t− in

(
v − LC (v) dn+1

(
c(n+1) ⊗ t

))
if v ∈ ker(dn) \ {0}

0 otherwise
,

where c(n+1)t = LM (v), c(n+1) ∈ Cn+1 and t ∈ O(I).
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Example 4.1.3.3

Let us consider the algebra presented by ⟨X|R⟩, where X = {x, y, z} and the rela-
tions are R = {xxyx, xxx− xx, yxz − yx} with the deglex monomial order induced
by x ≻ y ≻ z augmented with the evaluation of polynomials at zero. We
have V := LM (R) = {xxyx, xxx, yxz} and the graph of n-chains is given in Figure 4.1.
We have, for all ζ ∈ X and x1 · · ·xℓ ∈ O(I):

d1(ζ ⊗ 1) = ζ

i0(x1 · · ·xℓ) = x1 ⊗ x2 · · ·xℓ

Then:

d2(xxx⊗ 1) = x⊗ xx− i0d1(x⊗ xx) definition of d2

= x⊗ xx− i0(xxx) definition of d1

= x⊗ xx− i0(xx) reduction

= x⊗ xx− x⊗ x definition of i0

Similarly, we compute:

d2(xxyx⊗ 1) = x⊗ xyx

d2(yxz ⊗ 1) = y ⊗ xz − y ⊗ x

The 3-chains are {xxyxxyx, xxyxxx, xxyxz, xxxyx, xxxx}. Then:

d3(xxxyx⊗ 1) = xxx⊗ yx− i1d2(xxx⊗ yx) definition of d3

= xxx⊗ yx− i1(x⊗ xxyx− x⊗ xyx) definition of d2

= xxx⊗ yx− i1(x⊗ 0− x⊗ xyx) reduction

= xxx⊗ yx + xxyx⊗ 1 definition of i1

In an analoguous manner, we compute:

d3(xxyxxyx⊗ 1) = xxyx⊗ xyx

d3(xxyxxx⊗ 1) = xxyx⊗ xx− xxyx⊗ x

d3(xxyxz ⊗ 1) = xxyz ⊗ z − xxyx⊗ 1

d3(xxxx⊗ 1) = xxx⊗ x

The 4-chains are:

{xxyxxyxxyx, xxyxxyxxx, xxyxxyxz, xxyxxxyx,

xxyxxxx, xxxyxxyx, xxxyxxx, xxxyxz, xxxxxyx, xxxxxx}
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We thus have:

d4(xxxyxxx⊗ 1) = xxxyx⊗ xx− i2d3(xxxyx⊗ xx) definition of d4

= xxxyx⊗ xx− i2(xxx⊗ yxxx + xxyx⊗ xx) definition of d3

= xxxyx⊗ xx− i2(xxx⊗ yxx + xxxyx⊗ xx) reduction

= xxxyx⊗ xx− xxxyx⊗ x− i2(xxyx⊗ xx− xxyx⊗ x) definition of i2

= xxxyx⊗ xx− xxxyx⊗ x− xxyxxx⊗ 1 definition of i2

We compute in the same way:

d4(xxyxxyxxyx⊗ 1) = xxyxxyx⊗ xyx

d4(xxyxxyxxx⊗ 1) = xxyxxyx⊗ xx− xxyxxyx⊗ x

d4(xxyxxyxz ⊗ 1) = xxyxxyx⊗ z − xxyxxyx⊗ 1

d4(xxyxxxyx⊗ 1) = xxyxxx⊗ yx + xxyxxyx⊗ 1

d4(xxyxxxx⊗ 1) = xxyxxx⊗ x

d4(xxxyxxyx⊗ 1) = xxxyx⊗ xyx− xxyxxyx⊗ 1

d4(xxxyxz ⊗ 1) = xxxyx⊗ z − xxxyx⊗ 1− xxyxz ⊗ 1

d4(xxxxxyx⊗ 1) = xxxx⊗ xyx

d4(xxxxxx⊗ 1) = xxxx⊗ xx− xxxx⊗ x

We can compute in that fashion any differential, by computing all the previous ones that
are needed.

4.1.4 Applications

The Anick resolution is useful in practice to compute homological invariants of the algebra A and
other constructions built on top of those invariants.

For instance, in [Ani86], the Anick resolution is shown to provide an efficient way of computing
the Hilbert series [Ani82] for monommial algebras (and more generally any graded algebra for which
the resolution is minimal), via the formula:

HA(z) =
(

1−
∞∑

n=0
(−1)nHKCn

(z)
)−1

,

where HKCn(z) =
∑∞

k=0 card
{

c(n) ∈ Cn

∣∣ ∣∣c(n)
∣∣ = k

}
zk. The simplifications that Anick resolution

offer for the computation of the Hilbert series are exploited in the Bergman package developped
in [CU97].

In [Ufn95], it is stated that if A is a monomial algebra, then the double Poincaré series as defined
in [Ufn95, page 60] of A exists and satisfies the equation:

PA(s, t) = 1 +
∞∑

n=0
HKCn

(t)sn+1

It is also asserted that the finiteness of the resolution for a monomial algebra, i.e. the existence
of an n ∈ N such that Cn = 0, is equivalent n being an upper bound for the global dimension
of A [Eil56], i.e. gl.dimA ⩽ n. Furthermore, for a general connected graded algebra A = ⟨X|R⟩,
we can consider its associated monomial algebra A = ⟨X|V ⟩ where V is the set of obstructions (i.e.
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the leading monomials of a minimal non-commutative Gröbner basis of the ideal generated by R).
We have then the coefficient-wise inequality PA(s, t) ⩽ PA(s, t) for the double Poincaré series of the
two algebras. This means in particular that if X and V are finite, then the Poincaré series exists.
Moreover, assuming there is an n ∈ N such that Cn = 0, then the global dimension of the graded
algebra A is bounded by n above, gl.dimA ⩽ n.

A particular corollary case discussed in [Ani86, Ufn95] of these results is, if no leading monomial of
the minimal non-commutative Gröbner basis G of the ideal of relations overlaps with another leading
monomial of an element G, then TorA

n (K,K) = 0 for n ⩾ 3 and thus PA(s, t) = 1 + HXs + HRs2.
Finally, in [NWW19], the authors use the Anick resolution and show that it is equivalent to a

tensor product of three complexes that they use to prove that cohomology rings of certain Hopf
algebras are finitely generated.

4.1.5 Properties

In [Ani86], Anick specialises Theorem 4.1.3.2 to the case of graded algebras and shows that,
assuming the monomial order is graded by some degree map on the generators (for instance the
deglex monomial order), the differentials of the resolution are homogeneous maps of graded-algebras.

The Anick resolution is not minimal in general. However, in the case of monomial algebras, it
is always minimal ([Ani86, Lemma 3.3], [Ufn95, Page 60]). Indeed, writing (rn)n∈N the sequence
defined by rn := card(Cn), since each A-module KCn⊗KA (n ∈ N) is free of rank rn, it is isomorphic
to the rn-fold direct sum of the base ring A:

KCn ⊗K A ∼= Arn :=
rn⊕

i=1
A. (4.1)

On the other hand, we have the isomorphism:

φ : A⊗A K→ K
a⊗ λ 7→ a · λ = ε(a)λ,

(4.2)

that induces a sequence of isomorphisms
(

φrn : Arn ⊗A K→ Krn

)
n∈N

because the tensor product
is an additive functor and thus commutes with direct sums.

Therefore, applying the functor −⊗A K on the Anick resolution, we obtain by (4.1) and (4.2) the
following commutative diagram, writing Fn := KCn ⊗K A for all n ∈ N:

· · · Fn ⊗A K Fn−1 ⊗A K · · · F1 ⊗A K F0 ⊗A K K⊗A K 0

· · · Arn ⊗A K Arn−1 ⊗A K · · · Ar1 ⊗A K A⊗A K K⊗A K 0

· · · Krn Krn−1 · · · Kr1 K K⊗A K 0

dn⊗idK d1⊗idK ε⊗idK

φrn φrn−1 φr1 φ

dn d1 d0

By definition, the Anick resolution is therefore said to be minimal [Eil56] if dn = 0 for all n ∈ N.
But, we have explicitly for all (λ1, · · ·, λrn

) ∈ Krn :

dn(λ1, · · ·, λrn
) = φrn−1 ◦ (dn ⊗ idK) ◦

(
φ−1)rn (λ1, · · ·, λrn

)

= φrn−1 ◦ (dn ⊗ idK) (η(λ1), · · ·, η(λrn
))⊗ 1K)

= φrn−1(dn(η(λ1), · · ·, η(λrn
))⊗ 1K)

=
(

ε
(

d(1)
n (η(λ1), · · ·, η(λrn

))
)

, · · ·, ε
(

d(rn−1)
n (η(λ1), · · ·, η(λrn

))
))

,

where d
(i)
n = p

(i)
n dn with p

(i)
n the projection on the i’th component.
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But as we will see in Proposition 4.3.2.2, ωc(n) = 0 in the statement of Theorem 4.1.3.2, for any n-
chain and any n ∈ N. Then, dn(η(λ1), · · ·, η(λrn)) is a K-linear combination of c(n−1) ⊗ t where t

is not the empty word. Thus, the d
(i)
n (η(λ1), · · ·, η(λrn)) are either zero or of the form µc(n−1) ⊗ t

with t not the empty word and µ ∈ K. It follows that applying the augmentation map yields 0 for
each component since they belong in the augmentation ideal A+. Hence, the resolution is indeed
minimal if A is monomial.

Now recall the definition of n-chains in terms of a graph, denote by Q = (Q0, Q1) the graph of
Definition 4.1.2.2. Suppose that the set V of obstructions is finite (that is to say, the reduced
non-commutative Gröbner basis of the ideal of relations is finite). This happens for instance
when the algebra A is of finite K-dimension, according to [Far92]. Suppose also that the set X of
generators is finite. Then, it entails that the set Q0 of vertices is finite. We can thus construct the
adjacency matrix M of the graph Q:

M :=

1 if there is an edge s→ t

0 otherwise


s∈Q0
t∈Q0

,

where Q0 is ordered in a fixed way (by identifying it to the set of integers J1 .. card(Q0)K).
This matrix is read as follows: each line is associated with a vertex s ∈ Q0. A 1 in column

associated with vertex t ∈ Q0 means that there is an edge going from s to t. Hence, M is symmetric
if and only if for each edge s→ t the edge t→ s exists. Also, a non-zero diagonal coefficient at row
and column s ∈ Q0 means that there is a loop edge on s.

Example 4.1.5.1

For instance, considering again Example 4.1.2.5 whose graph is given in Figure 4.1 we get
the adjacency matrix:

M =



0 1 1 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0
0 0 0 1 1 1 0 0
0 1 0 0 0 0 1 0
0 0 0 1 1 1 0 0
0 0 0 0 0 0 0 0


,

where the set of vertices is ordered as (1, x, y, z, xyx, xx, yx, xz).

Recall that the coefficient at (s, t) ∈ Q0 × Q0 of the n’th power of the adjacency matrix gives
the number of n-walks (i.e. walks with n edges) starting from s and finishing on t. Hence, since,
for n ∈ N, the n-chains have been defined has the n-walks starting from 1, to know exactly the rank
of the n’th free A-module KCn⊗K A in the Anick resolution, one just has to compute Mn and take
the sum of the coefficients in row associated with the monomial 1. This observation entails the
following proposition:
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Proposition 4.1.5.2

Let A = ⟨X|R⟩ be a monomial algebra where the set X of generators and the set V = R

of obstructions are finite. Let Q = (Q0, Q1) be the associated graph and M the adjacency
matrix.
Define the sequence (sn)n∈N as sn :=

∑
v∈Q0

m1,v where Mn =: (ms,t)s∈Q0
t∈Q0

. Then:

∀n ∈ N, TorA
n (K,K) ∼= Ksn .

This proposition remains true when considering other algebras, not necessarily monomial, in the
event where the Anick resolution is also minimal for those algebras.

Notice also that, by definition, no edges can reach the vertex 1. Therefore, any walk involving the
vertex 1 starts at 1 (and, incidentally, does not pass through it again). Furthermore, to get the set
of n-chains from the graph, one has only to consider the connected component of the vertex 1, that
is to say, all those vertices that have a walk passing through 1. Hence, considering the adjacency
matrix M̂ of that restricted graph, it follows that M̂ is nilpotent, i.e. there exists n ∈ N such
that M̂n = 0, if and only if, the Anick resolution is finite. Indeed, nilpotence of the adjacency
matrix is equivalent to the non-existence of walks in the graph that goes through the same vertex
twice (because the graph is finite under our assumptions, so the only way to have walks of arbitrary
length is to have a walk that goes through the same vertex twice, somewhat similar to what we
would call a loop). And since, by restriction on the connected component, every walk starts from
vertex 1, then there is a bijection between the n-chains and the n-walks. Finally, the claim follows
from the fact that there will be no (n + 1) chains if there are no n-chains (this is deduced from the
inductive Definition 4.1.2.3).

4.2 Koszul complex

The Koszul complex as we will present it here is the outcome of several generalisation procedures.
Starting from the work of Koszul in [Kos50] in which the homology of Lie algebras is studied,
Tate describes in [Tat57] how to construct in theory generally smaller resolutions than the bar
resolution (see [EM53, ML95]). This process is now known as the Koszul-Tate resolution. Inspired
by these ideas, Priddy introduces the concept of Koszul algebras in [Pri70] for quadratic algebras
(Definition 1.2.1.9). In this paper is introduced the Koszul complex of a quadratic algebra. It is
then a theorem that the Koszul property for a quadratic algebra is equivalent to the acyclity of
its Koszul complex. It is also a result [Ber01] that the Koszul complex then becomes a minimal
resolution of the ground field. After studying the Koszul property of quadratic algebras in terms
of confluence and lattice theory in [Ber98a, Ber98b], Berger introduces in [Ber01] a generalisation
of the Koszul property for the case of homogeneous algebras of degree ⩾ 2 (Definition 1.2.1.8) as
well as describes explicitly the associated Koszul complex for these algebras. In this paper, Berger
goes on to prove that the Koszul property for these algebras is also equivalent to the acyclity of the
associated Koszul complex. He also gives a sufficient condition in terms of the distributivity [Ber01]
of the algebra in addition to a certain property called extra-condition (see Theorem 4.2.3.6). A
more abstract and fundamental approach to obtaining the Koszul complex for quadratic algebras
is connected to the notion of Koszul duality [BGS88]. In [BDVW03], the authors go into details
about the generalisation of this duality for non-quadratic homogeneous algebras and explain how
to recover the explicit definition of the Koszul complex as originally presented in [Ber01].
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4.2.1 Koszul duality

Fix throughout this section K a field and N ⩾ 2 an integer. The tensor product is taken over
field K unless specified otherwise, so we allow ourselves to drop the subscript, i.e. ⊗ := ⊗K.

In this subsection, we give an overview of Koszul duality for homogeneous algebras of arbitrary
degree as it is presented in [BDVW03].

First, let us recall the definition of homogeneous algebra (Definition 1.2.1.8) but put it in terms
of tensor algebras:

Definition 4.2.1.1 : Homogeneous algebra (Tensor algebra)

An N -homogeneous K-algebra is any associative unitary K-algebra A for which there exist
a finite-dimensional K-vector space E and a subspace R of E⊗N such that there is the
isomorphism of K-algebras:

A ∼= T (E)/I(R),

where T (E) is the tensor algebra on E and I(R) is the two-sided ideal generated by R.
In that case, we write A(E, R) := A.

Every N -homogeneous algebra A is a graded connected algebra generated in degree 1 where we
have:

A =
⊕
n∈N

An with An :=


E⊗n ∀n < N,

E⊗n∑
i+j+N=n E⊗i ⊗R⊗ E⊗j

∀n ⩾ N.

Definition 4.2.1.2 : Homomorphism of homogeneous algebras

Let A(E, R) and A′(E′, R′) be two N -homogeneous K-algebras. A homomorphism of N-
homogeneous algebras is the map induced by any map f : E → E′ such that f⊗N (R) ⊆ R′.

The N -homogeneous algebras together with their homomorphisms form a subcategory, denoted
in [BDVW03] by HN Alg, of the graded connected algebras category. One can define a contravariant
endofunctor on that category:

Definition 4.2.1.3 : Homogeneous dual

Let A := A(E, R) be an N -homogeneous K-algebra. We define its dual as being the N -
homogeneous algebra A! := A(E∗, R⊥) where E∗ := HomK (E,K) is the dual vector space
of E and R⊥ is the annihilator of R under the natural pairing, that is to say:

R⊥ =
{

φ ∈
(
E⊗N

)∗
∣∣∣ ∀x ∈ R, φ(x) = 0

}
identifying

(
E⊗N

)∗ with (E∗)⊗N since E is finite-dimensional.

Notice that
(
A!)! ∼= A for any N -homogeneous algebra A.

Now, if f : E → E′ is the underlying map defining a homomorphism, also denoted f , of N -
homogeneous algebras between A := A(E, R) and A′ := A(E′, R′), then we define the dual of that
map as the transpose of f such that:

f ! : (A′)! → A!

u 7→ f !(u) := u ◦ f.



4.2. KOSZUL COMPLEX 71

The association of the dual for N -homogeneous K-algebras and of the dual for their homomorphisms
yields a well-defined contravariant endofunctor on HN Alg.

Referring the reader to [BDVW03] for more details, one can define two “tensor products”, ◦ and •,
on HN Alg in the sense that if it is equipped:

• with ◦ then it is a tensor category with unit object K[t], the univariate polynomial algebra,

• with • then it is also a tensor category but with unit object K[t]!.

See [DM82] for details concerning tensor categories, also called monoidal categories.
A certain natural isomorphism in the category of K-vector spaces is shown to entail (see [BDVW03,

Theorem 2]), as it is the case for quadratic algebras, the natural isomorphism in HN Alg:

Hom (A •B, C) ∼= Hom
(
A, B! ◦ C

)
. (4.3)

The unit object K[t]! is isomorphic as N -homogeneous algebra to A(K,K⊗N ) which in turn can
be written ∧N{d} := K[d]/I(dN ), the univariate polynomial algebra in the indeterminate d modulo
the relation dN = 0. Setting A to that object in (4.3) results in the natural isomorphism:

Hom (B, C) ∼= Hom
(
∧N{d}, B! ◦ C

)
. (4.4)

Then, if one is given f ∈ Hom (B, C), then there is a unique g ∈ Hom
(
∧N{d}, B! ◦ C

)
associated

to f through the isomorphism (4.4). Write ξf := g(d) the element in B! ◦ C that is the image of
the indeterminate d through g.

As for the case with quadratic algebras, there exists an injective homomorphism of alge-
bras i : A ◦A′ → A⊗A′ whose image is

⊕
n∈N An ⊗ A′

n (see [BDVW03, Proposition 1]). Then,
defining ∂ as the left multiplication by i(ξf ) in B! ⊗ C, we obtain with the proper graduation
a cochain N -complex (B! ⊗ C, ∂), denoted L(f). A cochain (N -)complex is th dual notion of a
chain (N -)complex, the indices are increasing instead of decreasing. In the particular case where
B = C and f is the identity, we write L(B).

There also exists a chain N -complex K(f) = (C ⊗
(
B!)∗

, ∂) (where
(
B!)∗ denotes the graded

dual, that is
⊕

n∈N
(
B!

n

)∗) obtained by partial dualisation of the cochain N -complex L(f), by
applying HomC (−, C) on each module in L(f) and by identifying, thanks to the finite dimen-
sion, HomC

(
B!

n ⊗ C, C
)

with C ⊗
(
B!)∗. Once again, if B = C and f is the identity, then one

writes K(B) instead.
The Koszul complex we are interested in this thesis is derived from the chain N -complex K(A)

where A is the N -homogeneous algebra at study. We describe a more explicit way of obtaining it in
the next section, that ultimately corresponds to the way Berger presented it in [Ber01].

4.2.2 Koszul complex

Let A := A(E, R) be an N -homogeneous K-algebra. Then, we can give an explicit description of
the dual A!:

A! ∼=
⊕
n∈N

A!
n with A!

n :=


(E∗)⊗n ∀n < N,

(E∗)⊗n∑
i+j+N=n (E∗)⊗i ⊗R⊥ ⊗ (E∗)⊗j

∀n ⩾ N,

where E∗ and R⊥ are the same as in Definition 4.2.1.3.
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Now, let us describe the graded dual of the algebra A!:

(
A!)∗ ∼=

⊕
n∈N

(
A!

n

)∗ with
(
A!

n

)∗ :=

E⊗n ∀n < N,⋂
i+j+N=n E⊗i ⊗R⊗ E⊗j ∀n ⩾ N,

since
(

V

W

)∗
∼= W ⊥ for every vector space V and subspace W .

For all n ∈ N and i, j ∈ N such that n = i + j, there exists canonical injections:

ιi,j :
(
A!

n

)∗ →
(
A!

i

)∗ ⊗
(
A!

j

)∗
,

by splitting the input word into two appropriate chunks.
Then, the chain N -complex K(A) is given by:

· · · −→ A⊗
(
A!

n

)∗ ∂−→ A⊗
(
A!

n−1
)∗ −→ · · · −→ A⊗

(
A!

1
)∗ ∂−→ A −→ 0,

where ∂ is the A-linear map induced by the canonical injection ι1,n−1. Indeed, since N ⩾ 2, we
have

(
A!

1
)∗ ∼= A1 ⊆ A, thus, because (An) is injected into

(
A!

1
)∗ ⊗

(
A!

n−1
)∗ via ι1,n−1, it can be

injected into A⊗
(
A!

n−1
)∗.

From that chain N -complex, we can construct a family Cp,r of chain complexes as defined in
Definition 3.1.1.1 that ranges over (r, p) ∈ J0 .. N − 2K× Jr + 1 .. N − 1K and are defined by:

· · · ∂N−p

−→ A⊗
(
A∗

N+r

) ∂p

−→ A⊗
(
A!

N−p+r

)∗ ∂N−p

−→ A⊗
(
A!

r

)∗ ∂p

−→ 0.

It is shown in [BDVW03] that the exactness of any chain complexes Cp,r for (p, r) ̸= (N − 1, 0)
implies that the algebra A is trivial, in the sense that either R = 0 or R = E⊗N .

The chain complex CN−1,0 on the other hand is of particular interest since it is proven in [Ber01]
that its acyclicity is equivalent to the Koszul property of the algebra A. We call that chain
complex CN−1,0 the Koszul complex of the N -homogeneous algebra A. Let us now proceed to give
an explicit definition of that chain complex.

Definition 4.2.2.1 : Diagonal sequence

Let N ⩾ 2 be an integer.
The diagonal sequence associated to N , denoted by ℓN , is defined as:

ℓN (n) :=

kN if n = 2k,

kN + 1 if n = 2k + 1.

Notice how the diagonal sequence associated with 2 is just the identity sequence.
Notice also that, no matter the value of N ⩾ 2, the sequence is strictly increasing.

Example 4.2.2.2

We have:

ℓ3 = (0, 1, 3, 4, 6, 7, 9, 10, · · · ),

ℓ4 = (0, 1, 4, 5, 8, 9, 12, 13, · · · ),

ℓ5 = (0, 1, 5, 6, 10, 11, 15, 16, · · · ).
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Remark 4.2.2.3

For all n ∈ N, we have:

(i) ℓN (n + 1)− ℓN (n) = 1 if n is even,

(ii) ℓN (n + 1)− ℓN (n) = N − 1 if n is odd,

(iii) ℓN (n + 2)− ℓN (n) = N regardless of the parity of n.

Let A = ⟨X|R⟩ be an N -homogeneous algebra according to Definition 1.2.1.8. Define:

J0 := K J1 := KX J2 = KR (4.5)

and:

∀n ⩾ 3, Jn :=
ℓN (n)−N⋂

i=0
KX(i) ⊗KR⊗KX(ℓN (n)−N−i) ⊆ KX(ℓN (n)) (4.6)

where KX(j) := KX⊗j for all j ∈ N.

Definition 4.2.2.4 : Koszul complex

Let A = ⟨X|R⟩ be an N -homogeneous algebra.
The Koszul complex of A is the complex in the category of left A-modules:

· · · → A⊗K Jn+1
∂n+1→ A⊗K Jn

∂n→ A⊗K Jn−1 → · · · → A⊗KKR
∂2→ A⊗KKX

∂1→ A⊗KK→ 0

where the Jn are as defined in (4.5) and (4.6) and ∂n+1 is defined for n ∈ N as the restriction
of the following map to A⊗ Jn+1:

A⊗K KX(ℓN (n+1)) → A⊗K KX(ℓN (n))

1A ⊗ w 7→ w1 ⊗ w2,

with w1 ∈ KX(ℓN (n+1)−ℓN (n)) and w2 ∈ KX(ℓN (n)) the unique words such that w = w1w2.

Remark 4.2.2.5

So far, we have worked with the Koszul complex of left A-modules, but we could just as
well work with the chain complex of right A-modules by tensoring the Jn by A on the right:

· · · → Jn+1⊗K A
∂n+1→ Jn⊗K A

∂n→ Jn−1⊗K A→ · · · → KR⊗K A
∂2→ KX⊗K A

∂1→ K⊗K A→ 0

and defining ∂n+1 for n ∈ N as the restriction of the following map to Jn+1 ⊗A:

KX(ℓN (n+1)) ⊗K A→ KX(ℓN (n)) ⊗K A

w ⊗ 1A 7→ w1 ⊗ w2,

with w1 ∈ KX(ℓN (n)) and w2 ∈ KX(ℓN (n+1)−ℓN (n)) the unique words such that w = w1w2.

4.2.3 Koszul property

Depending on the author, the Koszul property for N -homogeneous algebras can be stated in
different ways. For instance, Berger defines it as a purity condition on the Tor vector spaces. To
understand this definition, let us start by explaining how the Tor groups can be endowed with a
graded vector space structure when the resolution is taken in the category of graded A-modules.
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If (P•, ∂) is a projective resolution of K in the category of left (or right) A-modules, then tensoring
by K over A to obtain the complex (K⊗A P•, idK⊗A∂) yields a complex of K-vector spaces, since K
can be seen as a (K, A)-bimodule (or as a (A,K)-bimodule for the right A-modules variant) and
since the differentials are K-linear in particular, then the homology of that complex, known as
the Tor groups, can be equipped with a structure of K-vector space.

Moreover, if the A-modules in the resolution (P•, ∂) are graded and the differentials are graded maps
of degree 0, then a graduation can be canonically defined on the tensored complex (K⊗AP•, idK⊗A∂).
It follows that the Tor vector spaces can be graded:

TorA
n (K,K) =

⊕
m∈N

TorA
n,m (K,K) .

Before we express the Koszul property as Berger did in [Ber01], notice the following result:

Proposition 4.2.3.1 : [BM06, Proposition 2.1]

Let A be an N -homogeneous K-algebra. Then:

∀n ∈ N, ∀m < ℓN (n), TorA
n,m (K,K) = 0.

The Koszul property is said expressed as the following purity condition:

Definition 4.2.3.2 : Koszul property

Let A be an N -homogeneous K-algebra.
Then, A is a Koszul algebra if the graded Tor vector spaces are pure in degree given by the
diagonal sequence, that is to say, if:

∀n ∈ N, ∀m ̸= ℓN (n), TorA
n,m (K,K) = 0.

It is shown in [Ber01] and in [YZ03] that the following theorem is true:

Theorem 4.2.3.3 : ([Ber01, YZ03])

Let A be an N -homogeneous algebra.
Then, A is a Koszul algebra if and only if the Koszul complex as defined in 4.2.2.4 is a
deleted resolution of K under the natural augmentation of graded connected algebras.

Another way to characterise the Koszulity of an algebra is by enforcing conditions on the Yoneda
algebra as put forward in [BF85] for quadratic algebras but generalisable to homogeneous algebras:

Theorem 4.2.3.4 : ([BF85])

Let A be an N -homogeneous K-algebra.
Then, A is a Koszul algebra if and only if Exti,j

A (K,K) = 0 for all ℓN (i) ̸= j.
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Yet another characterisation, also in terms of the Yoneda algebra, is presented in [HL05] and
in [CS08]:

Theorem 4.2.3.5 : ([HL05, CS08])

Let A be an N -homogeneous K-algebra.
Then, A is a Koszul algebra if and only if the bi-graded Yoneda algebra ExtA (K,K) is
generated as an algebra by Ext1

A (K,K) and Ext2
A (K,K).

Finally, when the algebra is distributive (see [Ber01, Section 3]), then the Koszulity is equivalent
to the extra-condition of Berger:

Theorem 4.2.3.6 : ([Ber01])

Let A = A(E, R) be an N -homogeneous K-algebra.
Suppose that A is distributive. Then, A is a Koszul algebra if only if it satistfies the
extra-condition which is equivalent to:

∀m ∈ J2 .. N − 1K, (E(m) ⊗R) ∩ (R⊗ E(m)) ⊆ (E(m−1) ⊗R⊗ E)

Notice how the extra-condition is an empty condition when N = 2.

4.3 Special case of homogeneous monomial algebras

4.3.1 Overlap property of homogeneous monomial presentations

This section is dedicated to the main result of this thesis: the Anick resolution (Theorem 4.1.3.2)
and the Koszul complex (Definition 4.2.2.4) are the same when considering the case of homogeneous
monomial algebras (Definition 1.2.3.5) satisfying the overlap property.

It is a result of [Ber01] that monomial algebras are distributive and that the extra-condition
is equivalent to the so-called overlap property for homogeneoous monomial algebras described
thereafter. It follows by Theorem 4.2.3.6 that homogeneous monomial algebras satisfying the
overlap property are Koszul.

Definition 4.3.1.1 : Overlap property

Let N ⩾ 2 be an integer. Let ⟨X|R⟩ be a N -homogeneous monomial presentation of an
algebra A.
The presentation ⟨X|R⟩ is said to satisfy the overlap property when, if w ∈ ⟨X⟩ is a word of
length in JN + 2 .. 2N − 1K that has a relation in R as a prefix as well as a relation in R as
a suffix, then every subword of w of length N is a relation in R. In symbols:

∀m ∈ J2 .. N − 1K, RX(m) ∩X(m)R ⊆
⋂

i+j=m

X(i)RX(j)

To prove the result we have described at the start of this subsection we establish a few intermediary
results in the next subsections. We begin by showing the special form the Anick resolution takes
when considering monomial algebras. Then, we show that for any homogeneous monomial algebra,
the Koszul complex is a subcomplex of the Anick resolution. Finally, we show in the last subsection
that assuming the overlap property to be true implies that the Anick resolution and Koszul complex
are equal.
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4.3.2 Anick resolution for monomial algebras

In this subsection, we fix ⟨X|R⟩ a monomial presentation (Definition 1.2.3.3) of a homogeneoous
monomial algebra (Definition 1.2.3.5) over a field K. We take as augmentation for this algebra the
naturally induced augmentation map induced by the graduation.

We can assume that R is an anti-chain for the subword relation, i.e. there are no relation in R

that is a proper subword of another relation in R. Indeed, any relation being a proper superword
of another is superfluous for the generated ideal and can therefore be omitted. In particular, if the
presentation is also homogeneous, then R is an anti-chain since all relations are of the same length
and thus cannot be proper subwords of other relations.

It follows that, since R are monomials, all the S-polynomials (Definition 1.2.4.5) of the rela-
tions necessarily reduce to zero and therefore R is a minimal non-commutative Gröbner basis
(Definition 1.2.4.7) of the ideal generated by R.

Hence, we have the following proposition:

Proposition 4.3.2.1

Let ⟨X|R⟩ be a monomial presentation with R an anti-chain for the subword relation.
The set of obstructions for the Anick resolution is exactly the set R of relations.

The differentials in the Anick resolution also admit a special form in that context:

Proposition 4.3.2.2

Let A be a monomial algebra presented with a monomial presentation ⟨X|R⟩. Write Cn the
set of n-chains for n ∈ N. Then:

∀n ⩾ 1, ∀c(n) = [t1, · · ·, tn] ∈ Cn, dn ([t1, · · ·, tn]⊗ 1A) = [t1, · · ·, tn−1]⊗ tn,

where [t1, · · ·, tn−1] = 1 if n = 1 and dn are the differentials of the Anick resolution
(Theorem 4.1.3.2).

Proof. For n = 1, we have: d1(x⊗ 1A) = 1⊗ x− ηε(x) but x is of degree 1 in the graduation of A

which is augmented with the natural augmentation induced by the graduation. Hence, ε(x) = 0 for
all x ∈ X. It follows that d1(x⊗ 1A) = 1⊗ x.

Suppose the property is true for a certain n ⩾ 1. Let c(n+1) = [t1, · · ·, tn+1] ∈ Cn+1. We have:

dn+1 ([t1, · · ·, tn+1]⊗ 1A) = [t1, · · ·, tn]⊗ tn+1 − in−1dn

(
[t1, · · ·, tn]⊗ tn+1

)
.

By induction hypothesis, we have:

dn

(
[t1, · · ·, tn]⊗ tn+1

)
:= [t1, · · ·, tn−1]⊗ tntn+1.

But, since tn and tn+1 are two consecutive tails in a (n+1)-chain with n ⩾ 1, then tntn+1 contains
an obstruction (as a suffix). Since the presentation is monomial, the obstruction reduces to zero
and thus tntn+1 = 0.

It follows that dn+1 ([t1, · · ·, tn+1]⊗ 1A) = [t1, · · ·, tn]⊗ tn+1 by linearity of dn and in−1.

As discussed previously in the section of properties of the Anick resolution, this special form of
the differentials imply that the Anick resolution is minimal for monomial algebras.
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4.3.3 Koszul is a subcomplex of Anick for homogeneous monomial alge-
bras

Fix throughout this subsection an integer N ⩾ 2, a field K, an N -homogeneous monomial K-
algebra A and ⟨X|R⟩ a homogeneous monomial presentation of A (Definition 1.2.3.5). We assume
that A is augmented with the natural augmentation map induced by the graduation.

Consider the Anick resolution (Theorem 4.1.3.2):

· · ·⇄ KCn+1 ⊗K A
dn+1

⇄
in

KCn ⊗K A
dn

⇄
in−1

KCn−1 ⊗K A ⇄ · · ·⇄ KC1 ⊗K A
d1
⇄
i0

KC0 ⊗K A
ε
⇄
η
K→ 0

(4.7)
and the Koszul complex of right A-modules (Remark 4.2.2.5) with the augmentation:

· · · → Jn+1 ⊗K A
∂n+1→ Jn ⊗K A

∂n→ Jn−1 ⊗K A→ · · · → J1 ⊗K A
∂1→ J0 ⊗K A

ε→ K→ 0. (4.8)

We will use the words “obstruction” and “relation” interchangeably in the sequel since we deal
with a monomial presentation with R an anti-chain (see Proposition 4.3.2.1).

Denote by Bn for any n ∈ N the basis of the vector space Jn defined as follows, from the definitions
of the Jn in (4.5) and (4.6):

B0 = {1} , B1 = X, B2 = R, (4.9)

and:

∀n ⩾ 3, Bn =
ℓN (n)−N⋂

i=0
X(i)RX(ℓN (n))−N−i, (4.10)

where ℓN denotes the diagonal sequence (Definition 4.2.2.1).

Remark 4.3.3.1

It follows from the definition of Bn for n ⩾ 3 in (4.10) that we have the following equivalence:

∀w ∈ ⟨X⟩ , w ∈ Bn ⇔

w is of length ℓN (n) and,

any subword of w of length N is a relation in R.

Theorem 4.3.3.2 : (Koszul complex is a subcomplex of Anick resolution)

Let N ⩾ 2 be an integer. Let A = ⟨X|R⟩ be an N -homogeneous monomial algebra presented
with a homogeneous monomial presentation.
Then, the Koszul complex (4.8) is a subcomplex of the Anick resolution (4.7). In other
words, we have:

∀n ∈ N, Jn ⊗K A ⊆ KCn ⊗K A

and:
∀n ⩾ 1, ∀ω ∈ Jn ⊗K A, dn(ω) = ∂n(ω).

Proof. It suffices to show that the basis Bn of Jn is contained in the basis of KCn, for each n ∈ N.
Combining the Remark 4.1.2.8 with the result of Proposition 4.3.2.1 and comparing with (4.9),

we obtain that:
C0 = {1} = B0, C1 = X = B1, C2 = R = B2.

Let n ⩾ 3. Write ℓ := ℓN (n). Let w := x1 · · ·xℓ ∈ Bn.
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Define t1, · · ·, tn as:

tm :=

xkN+1 if ∃k ∈ N, m = 2k + 1,

x(k−1)N+2 · · ·xkN if ∃k ∈ N, m = 2k,
(4.11)

for m ∈ J1 .. nK.
Notice how w = t1 · · · tn. Indeed, we have:

• t1 = x1,

• t2 = x2 · · ·xN ,

• t3 = xN+1,

• t4 = xN+2 · · ·x2N and so on, up until:

• tn =

xkN+1 if n = 2k + 1 (note that ℓ = ℓN (2k + 1) = kN + 1),

x(k−1)N+2 · · ·xkN if n = 2k (note that ℓ = ℓN (2k) = kN).

If m is odd, tm is of length 1, and if m is even, tm is of length N − 1. In both cases, tm will always
be shorter than N ⩾ 2 which means that tm ∈ O(I). Moreover, for all m ∈ J1 .. n− 1K, tmtm+1

is a subword of w of length N . By Remark 4.3.3.1, we deduce that tmtm+1 is an obstruction. In
particular, tmtm+1 contains a unique obstruction which is a suffix. That satisfies all the requirements
for w to be considered an n-chain according to Definition 4.1.2.3. Thus: Bn ⊆ Cn.

Let n ⩾ 1. Let us now show that the restriction of the differentials dn to Jn ⊗K A corresponds
exactly to ∂n. Since the differentials are both A-linear, it suffices to show that they agree on all
input of the form wn ⊗ 1A where wn ∈ Bn.

Let wn ∈ Bn. Denote by w ∈ X(ℓN (n−1)) and t ∈ X(ℓN (n)−ℓN (n−1)) the unique words such
that wn = wt. By definition of the differentials for the Koszul complex, we have:

∂n(wn ⊗ 1A) = w ⊗ t.

We have just shown that Bn ⊆ Cn. Thus, wn = [t1, · · ·, tn] ∈ Cn where the tails tm are the ones
defined in (4.11). So, on one hand, according to Proposition 4.3.2.2, we have:

dn(wn ⊗ 1A) = [t1, · · ·, tn−1]⊗ tn,

and, on the other hand, we have length(tn) = ℓN (n)−ℓN (n−1) by definition of tn and Remark 4.2.2.3.
Hence, tn is a suffix of wn of the same size of t. By uniqueness, it follows that tn = t, which in turn
implies that [t1, · · ·, tn−1] = w. Hence, the result.

4.3.4 Overlap property implies equality

In this subsection, we use the same assumptions stated at the start of the last subsection (and
the same notations), but we suppose furthermore that the presentation ⟨X|R⟩ verifies the overlap
property (Definition 4.3.1.1).
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First, notice the following result:

Proposition 4.3.4.1

Consider the assumptions of this subsection.
Let n ∈ N. Let c(n+1) = c(n)t ∈ Cn+1 where c(n) is an n-chain and t is the tail of c(n+1).

length(t) =

1 if n even,

N − 1 if n odd.

In particular, for any n ∈ N, every n-chain is of length ℓN (n).

Proof. Let us proceed by induction on n.
For n = 0, an (n + 1)-chain is by definition a letter and is its own tail, therefore its tail is of

length 1.
Let n ∈ N such that c(n+1) = c(n)t ∈ Cn+1 with the tail t of the length stated in the proposition.

Let c(n+2) = c(n+1)t′ ∈ Cn+2 be an (n + 2)-chain with t′ as a tail.
By Remark 4.1.2.4, tt′ contains a unique obstruction that both is a suffix and overlaps on t.
If n is even, then t is of length 1. Hence, t′ is of length exactly N − 1, otherwise the obstruction

would not overlap on t.
If n is odd, then t is of length N − 1. By contradiction, suppose t′ is of length ℓ > 1. Necessarily,

we have ℓ < N since the suffix of tt′ of length N must overlap with t. Hence, the word tt′ is of
length N − 1 + ℓ ∈ JN + 1 .. 2N − 2K. Since n > 0, we can take c(n) = c(n−1)t′′ with t′′ of length 1
(by strong induction) and t′′t an obstruction. Hence, the word t′′tt′ of length in JN + 2 .. 2N − 1K
starts and ends in an obstruction. By the overlap property it follows that the prefix of length N in
the word tt′ is an obstruction which is different from the obstruction which is a suffix of tt′: this
contradicts the uniqueness of the obstruction contained in tt′. Hence, ℓ = 1.

For the last result of the proposition, reason step by step: an n-chain c(n) is the succession of n

tails t1, · · ·, tn. Then, from the first result, the n-chain c(n) is of length:

1 + (N − 1) + 1 + (N − 1) + · · ·+ length(tn) =

kN if ∃k ∈ N, n = 2k,

kN + 1 if ∃k ∈ N, n = 2k + 1,

which is exactly equal to ℓN (n) by definition of the diagonal sequence (Definition 4.2.2.1).

Remark 4.3.4.2

It follows from the assumptions of this subsection that the algebra A is Koszul, which
means that the Koszul complex (4.8) is a resolution of K in the category of right A-modules.
Moreover, it is a result in [Ber01] that this resolution is minimal.
On the other hand, we have already established that the Anick resolution is minimal for
monomial algebras. Hence, in our present context, the Koszul complex and the Anick
resolution are isomorphic. We proceed to show that, even more than that, they are actually
equal.

Before that, let us introduce the contracting homotopy hn : Jn ⊗K A→ Jn+1 ⊗K A of the Koszul
complex as presented in [Che16] for Koszul homogeneous monomial algebras but adapted for
right A-modules:

∀w ∈ Bn, ∀s ∈ O(I), hn(w ⊗ s) =

wp⊗ t if ∃p, t ∈ ⟨X⟩ , s = pt and wp ∈ Bn+1,

0 otherwise.
(4.12)
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Lemma 4.3.4.3

Let n ∈ N. Let c(n) = [t1, · · ·, tn] ∈ Cn and s ∈ O(I). Then:

c(n)⊗s ∈ ker(dn)\{0} ⇔ ∃tn+1 ∈ O(I), tn+1 is a prefix of s and [t1, · · ·, tn+1] ∈ Cn+1,

where d0 := ε and [t1, · · ·, tn] = 1 if n = 0.

Proof. By exactness, belonging in ker(dn) is equivalent to belonging in im(dn+1). By definition of
the image, this means:

∃c(n+1)
i ∈ Cn+1, ∃si ∈ O(I), c(n) ⊗ s = dn+1

(∑
i

c
(n+1)
i ⊗ si

)
,

which is equivalent to, by Proposition 4.3.2.2:

∃c(n+1)
i =

[
t
(i)
1 , · · ·, t

(i)
n+1

]
∈ Cn+1, ∃si ∈ O(I), c(n) ⊗ s =

∑
i

[
t
(i)
1 , · · ·, t(i)

n

]
⊗ t

(i)
n+1si.

Now since ⟨X|R⟩ is a monomial presentation, if t
(i)
n+1si is not a normal form, then the corresponding

term
[
t
(i)
1 , · · ·, t

(i)
n

]
⊗ t

(i)
n+1si equals 0. Hence, we can assume that all the t

(i)
n+1si are in normal form,

i.e. are in O(I).
But since the set

{
c′(n) ⊗ s′

∣∣ c′(n) ∈ Cn, s′ ∈ O(I)
}

is a basis of KCn⊗KA, then the decomposition
in linear combination of terms of this form is unique. Therefore, this is equivalent to:

∃c(n+1) =
[
t′
1, · · ·, t′

n+1
]
∈ Cn+1, ∃s′ ∈ O(I), c(n) ⊗ s = [t′

1, · · ·, t′
n]⊗ t′

n+1s′.

By identification, it follows that ti = t′
i for all i ∈ J1 .. nK and, since both s and t′

n+1s′ are in normal
form, t′

n+1 is a prefix of s that satisfy the statement of the lemma.

Let us now prove the main theorem.

Theorem 4.3.4.4 : (Koszul equals Anick)

Let N ⩾ 2 be an integer. Let A = K ⟨X|R⟩ be an N -homogeneous monomial algebra
presented with a homogeneous monomial presentation that satisfies the overlap property.
Then, the Koszul complex (4.8) and the Anick resolution (4.7) are equal.
Moreover, the respective contracting homotopies are equal.

Proof. We have shown in Theorem 4.3.3.2 that the Koszul complex is a subcomplex of the Anick
resolution, which means that Jn ⊗K A ⊆ KCn ⊗K A for all n ∈ N and that the restriction of dn

to Jn⊗K A is equal to ∂n for all n ⩾ 1. For this purpose, we have proven that Bn ⊆ Cn for all n ∈ N.
To prove the equality of the resolutions, it suffices to show the converse inclusion.

We have already established that Bn = Cn for n ∈ {0, 1, 2}. Let us show by induction on n that
is true for n ⩾ 3.

For n = 3, let w ∈ C3. Then by Proposition 4.3.4.1 it follows that w if of length ℓN (3) = N + 1. It
starts and ends with obstructions of length N , thus it trivially satisfies the condition in Remark 4.3.3.1
to belong to B3.

Suppose that for a certain n we have Cn ⊆ Bn. Let w ∈ Cn+1. By Proposition 4.3.4.1, it is
of length ℓN (n + 1) and the prefix p of w of length ℓN (n) is an n-chain. Therefore, p ∈ Bn by
induction hypothesis. This means that all subwords of p of length N are obstructions. It only
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remains to show that the subwords of length N that start at the (ℓN (n)−N + 1)’th letter or after
in w are also obstructions.

Consider thus the suffix s of w that start on the (ℓN (n) − N)’th letter. It is therefore of
length: ℓN (n + 1) − ℓN (n) + N ∈ {N + 1, 2N − 1}. If it is of length N + 1, the result is trivial
since it starts with the second-to-last obstruction and ends with the last obstruction and those are
the only two subwords of length N . Otherwise, if it is of length 2N − 1, we can apply the overlap
property to conclude that all the subwords of s of length N are obstructions.

Hence, w is of length ℓN (n + 1) and all its subwords of length N are obstructions. It follows by
Remark 4.3.3.1 that w ∈ Bn+1 and thus Cn+1 ⊆ Bn+1.

Let us now show that the respective contracting homotopies in (Theorem 4.1.3.2) and hn (4.12) are
equal. Since we have Bn = Cn for all n ∈ N, the Lemma 4.3.4.3 actually proves that the conditions
stated in the definition of in and hn are equivalent. Indeed, identifying respectively c(n) with w, s

with s and tn+1 with p from Lemma 4.3.4.3 to the definition of hn in (4.12), the condition tn+1

(which equals p) is a prefix of s is equivalent to the existence of t such that s = pt and the condition
that [t1, · · ·, tn+1] (which is equal to c(n)tn+1 and thus wp) is in Cn+1 is equivalent to wp ∈ Bn+1,
since the sets are equal.

Finally, then, it suffices to show that in and hn agree whenever they are not zero.
Let w = [t1, · · ·, tn] ∈ Cn = Bn and s ∈ O(I) such that there exists tn+1 ∈ O(I) prefix of s (that

is to say s = tn+1t for a certain t ∈ O(I)) and wtn+1 ∈ Cn+1 = Bn+1. Then:

in(w ⊗ s) = wtn+1 ⊗ t + in

(
w ⊗ s− dn+1

(
[t1, · · ·, tn+1]⊗ t

))
by definition of in

= wtn+1 ⊗ t + in

(
w ⊗ s− [t1, · · ·, tn]⊗ tn+1t

)
by Proposition 4.3.2.2

= wtn+1 ⊗ t by the assumptions on w and s

in(w ⊗ s) = hn(w ⊗ s) by definition of hn
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